

Ħ

F

TARTU ÜLIKOO

Ħ

Feasibility of a HMO-process in drinking water treatment technology for removing natural radioactivity and avoiding generation of NORM

Taavi Vaasma¹, <u>Siiri Suursoo¹</u>, Maria Leier¹, Anna Goi², Nele Nilb³

¹ Institute of Physics, University of Tartu (UT)
 ² Department of Materials and Environmental
 Technology, Tallinn University of Technology (TalTech)
 ³ Viimsi Water Ltd.

NSFS Conference, June 13th 2019

INTRODUCTION

- *Ca.* 18 % of Estonian inhabitants (230 000 peoole) consume drinking water where indcative dose (ID) exceeds 0.10 mSv/yr * (Forte *et al.*, 2010)
 * Parametric value given by Directive 2013/51/Euratom.
- High ID caused by ²²⁶Ra and ²²⁸Ra in Cambrian-Vendian groundwater.
- Groundwater treatment by filtration results in **NORM accumulation**.
- More than 300 tonnes of filter media with ²²⁶Ra, ²²⁸Ra, ²²⁸Th ≥ 1 kBq/kg

(Leier et al., 2018)

UNIVERSITY OF TARTU

Average activity concentrations ²²⁶Ra – 7.6 kBq/kg, ²²⁸Ra – 8.0 kBq/kg ²²⁸Th – 5.6 kBq/kg

- No national NORM management strategy.
- Potential for uncontrolled NORM waste disposal.

AIMS AND OBJECTIVES

- Ideal solution: a NORM-free water treatment technology.
- LIFE Alchemia "Towards a smart & integral treatment of natural radioactivity in water provision services" (2017-2020) <u>https://www.lifealchemia.eu/en/</u>
 - Objective: to demonstrate the technical and economic feasibility water treatment technologies to remove radioactivity from water and to minimize the generation of NORM.
 - 3 pilot plants in Spain and 1 pilot plant in Estonia.
 - Technology chosen in Estonia the HMO process.

THE HYDROUS MANGANESE OXIDES PROCESS **(IDENTIFY OF TARTU**) UNIVERSITY OF TARTU

- For Fe, Mn, and Ra removal
- 3-stage process: aeration \rightarrow HMO oxidation \rightarrow filtration
- **HMO suspension**: 2KMnO₄ + 3(MnSO₄·H₂O) → 5MnO₂↓ + K₂SO₄ + 2H₂SO₄ + H₂O
- Removal mechanisms:
 - $4Fe(HCO_3)_2 + O_2 + 2H_2O \leftrightarrow 4Fe(OH)_3\downarrow + 8CO_2$
 - $2Mn(HCO_3)_2 + O_2 + 2H_2O \leftrightarrow 2Mn(OH)_4 + 4CO_2$
 - Ra adsorption to and co-precipitation with Fe and Mn particulates and MnO₂

THE HYDROUS MANGANESE OXIDES PROCESS **(DECESS)** UNIVERSITY OF TARTU

Best removal rates in **lab-scale experiments**:

- Mn 81%
- Fe 90%
- Ra 86%

Schemes tested on the pilot plant:

- a) Aeration \rightarrow HMO oxidation \rightarrow Filtration [gravel-sand-anthracite], periodic dosing
- b) Aeration \rightarrow HMO oxidation \rightarrow Filtration [gravel-sand-anthracite-HMO precipitates], periodic dosing
- c) Aeration \rightarrow HMO oxidation \rightarrow Filtration [gravel-sand-anthracite], continuos dosing

THE PILOT PLANT

- Situated in Viimsi, Estonia in a water treatment facility operated by Viimsi Water Ltd.
- Target values in treated water

Fe	Mn	ID	
(μg/L)	(μg/L)	(mSv/yr)	
≤ 200	≤ 50	≤ 0.10	

 Raw water from Cambrian-Vendian aquifer

Fe	Mn	²²⁶ Ra	²²⁸ Ra	ID
(µg/L)	(µg/L)	(mBq/L)	(mBq/L)	(mSv/yr)
40-420	50-230	240-620	360-840	0.23-0.55

RESULTS – WATER

Removal efficiencies (%) for Fe, Mn, and Ra isotopes

Green – complient with drinking water quality parameters.

Red – target value exceeded.

	Scheme	Fe	Mn	²²⁸ Ra	U(²²⁸ Ra), k=2
a)	Aeration → HMO → Filtration [gravel–sand –anthracite], periodic dosing	79	79	49	10
		73	89	37	14
		85	83	63	7
		88	90	64	10
b)	Aeration → HMO → Filtration [gravel–sand –anthracite–HMO	83	47	45	13
		88	66	71	9
	periodic dosing	52	95	64	11
c)	Aeration → HMO → Filtration [gravel–sand –anthracite], continuos dosing	92	92	79	4
		87	87	74	7

7

RESULTS – BACKWASH WATER

Activity concentration of ²²⁶Ra and ²²⁸Ra in filter backwash water

	Scheme	²²⁶ Ra (Bq/L)	U(²²⁶ Ra), k=2 (Bq/L)	²²⁸ Ra (Bq/L)	U(²²⁸ Ra), k=2 (Bq/L)
a)	Aeration → HMO → Filtration [gravel–sand –anthracite], periodic dosing	5.48	0.14	7.89	0.33
		5.87	0.19	8.08	0.38
		3.12	0.10	4.23	0.21
b)	Aeration → HMO → Filtration [gravel–sand –anthracite–HMO precipitates], periodic dosing	3.24	0.11	4.32	1.65
		3.83	0.13	6.23	0.31
		2.43	0.08	3.23	0.16

RESULTS – FILTER MATERIAL

Accumulation rate of ²²⁶Ra, ²²⁸Ra, and ²²⁸Th, in filter material

		²²⁶ Ra	²²⁸ Ra	²²⁸ Th
	Filter material	(Bq/kg yr⁻¹)	(Bq/kg yr⁻¹)	(Bq/kg yr ⁻¹)
Pilot plant	Sand	160	220	28
	Anthracite	1300	1500	130
Current	Filtersorb®FMH	1400	1860	
Viimsi Water Ltd. (Hill <i>et al.</i> , 2018)	Zeolite	3400	4760	

TO BE CONTINUED...

Experiments will be continued:

- Continuos dosing
- Scheme with 2-stage filtration
 Aeration → HMO oxidation →
 - \rightarrow Filtration I [gravel-sand-anthracite] \rightarrow
 - → Filtration II [gravel-zeolite]

Acknowledgements

The study is performed in the framework of the LIFE ALCHEMIA project – LIFE16 ENV/ES/000437 (www.lifealchemia.eu) – which is financially supported by the LIFE Programme of the European Union).

The presentation reflects only the views of the authors. The European Commission/Agency is not responsible for any use that may be made of the information it contains.

Thank you!

References

UNIVERSITY OF TARTU

Forte, M., Bagnato, L., Caldognetto, E., Risica, S., Trotti, F., Rusconi, R., 2010. Radium isotopes in Estonian groundwater: measurements, analytical correlations, population dose and a proposal for a monitoring stradegy. *Journal of Radiation Protection*, 30, pp. 761-780.

Hill, L., Suursoo, S., Kiisk, M., Jantsikene, A., Nilb, N., Munter, R., Realo, E., Koch, R., Putk, K., Leier, M., Vaasma, T., Isakar, K., 2018. Long-term monitoring of a water treatment technology designed for radium removal – removal efficiencies and NORM formation. *Journal of Radiological Protection*, 38, pp. 1–24.

Leier, M., Kiisk, M., Suursoo, S., Vaasma, T., Putk, K., 2018. Formation of radioactive waste in Estonian water treatment plants. *Journal of Radiological Protection*, 39, pp. 1–10.