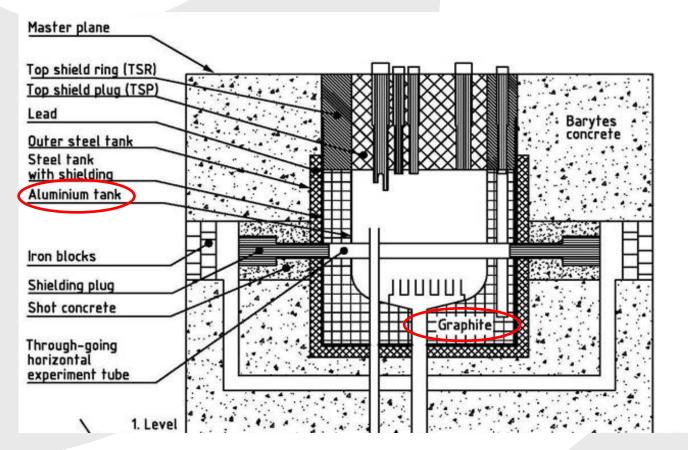
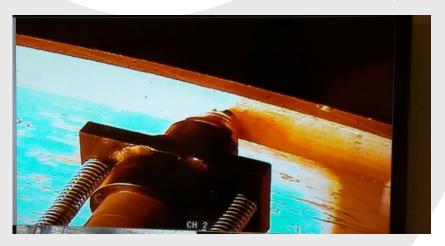
# Upper estimates for effective doses from release of <sup>36</sup>Cl activity during plasma cutting of the DR3 reactor tank

Jens Søgaard-Hansen Danish Decommissioning Roskilde, Denmark




# DR3 (Danish research Reactor 3) Under decommissioning since 2012






#### **Schematic vertical cross section**





## Plasma cutting of the reactor tank





Gas mixture (% vol.):

He: 77

N: 20

CO<sub>2</sub>: 3

No O<sub>2</sub>!

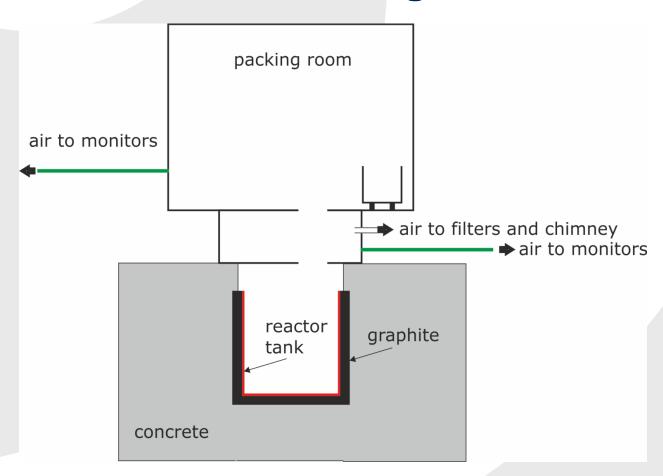
Plasma temperature:

~ 20000 K



# Half way through the cutting

graphite

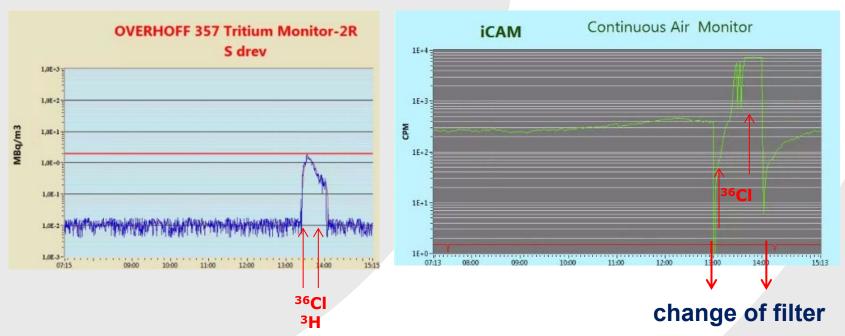

deposited (condensed) tank material



reactor tank (AI)



## **Air-monitoring**






### **Air-monitoring**



#### particulates on filter



Filter from air-monitor dissolved and <sup>36</sup>Cl identified.

<sup>36</sup>Cl identified in a freezing trap water sample from released air.



## Origin of <sup>36</sup>Cl

- direct neutron activation of stable <sup>35</sup>Cl
- direct neutron activation of stable 39K
- indirect neutron activation from <sup>34</sup>S

#### Origin of <sup>35</sup>Cl

- present in the raw carbon material
- leftover from a pre-irradiation chlorine gas treatment of the graphite at high temperatures



# **Upper** estimate for release of <sup>36</sup>Cl activity

$$Q = F_p \cdot T \cdot \overline{C}_{36_{Cl}} \cdot k$$

Q: released activity

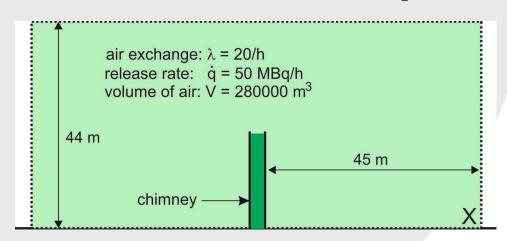
 $F_p$ : flow rate of air to chimney

*T*: plasma cutting time

 $\overline{\it C}_{36_{cl}}$ : average concentration of <sup>36</sup>Cl in air to gas monitor

k: air flow model parameter (k=1 or k=20)




# <u>Upper</u> estimates for releases of <sup>36</sup>Cl activity

| Date<br>(2017)        | Release<br>[MBq] | Uncertainty<br>[MBq] | Date<br>(2017)        | Release<br>[MBq] | Uncertainty<br>[MBq] |
|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|
| 24 <sup>th</sup> Feb. | 17               | 17                   | 3 <sup>th</sup> July  | 16               | 4                    |
| 8 <sup>th</sup> Mar.  | 3,2              | 3,2                  | 4 <sup>th</sup> July  | 114              | 28                   |
| 28 <sup>th</sup> Apr. | 38               | 38                   | 5 <sup>th</sup> July  | 69               | 17                   |
| 3 <sup>th</sup> May   | 42               | 42                   | 24 <sup>th</sup> Aug. | 79               | 20                   |
| 4 <sup>th</sup> May.  | 7,3              | 7,3                  | 25 <sup>th</sup> Aug. | 202              | 50                   |
| 5 <sup>th</sup> May   | 26               | 26                   | 28 <sup>th</sup> Aug. | 322              | 322                  |
| 8 <sup>th</sup> May   | 12               | 12                   | 29 <sup>th</sup> Aug. | 168              | 42                   |
| 9 <sup>th</sup> May   | 4,0              | 4,0                  | 30 <sup>th</sup> Aug. | 70               | 18                   |
| 10 <sup>th</sup> May  | 8,6              | 8,6                  | 28 <sup>th</sup> Sep. | 71               | 18                   |
| 15 <sup>th</sup> May  | 8,3              | 8,3                  | 29 <sup>th</sup> Sep. | 23               | 6                    |
| 18 <sup>th</sup> May  | 57               | 57                   | 2 <sup>th</sup> Oct.  | 17               | 4                    |
| 22 <sup>th</sup> May  | 139              | 139                  | 3 <sup>th</sup> Oct.  | 15               | 4                    |

Sum: 2,7 ± 0,4 GBq



# <u>Upper</u> estimates for effective dose (no-wind)

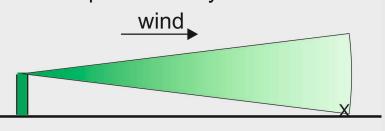


$$C(t) = \frac{\dot{q}}{V \cdot \lambda} \cdot (1 - e^{-\lambda \cdot t})$$

$$I = 1.2 \,\mathrm{m}^3 \,/\mathrm{h}$$

$$e_{50} = 0.007 \,\mu\text{Sv/Bq}$$

$$E_{50}(T) = \int_0^T \frac{\dot{q}}{V \cdot \lambda} \cdot \left(1 - e^{-\lambda \cdot t}\right) \cdot I \cdot e_{50} dt \approx \frac{\dot{q} \cdot T \cdot I \cdot e_{50}}{V \cdot \lambda}$$


$$E_{50}(5h) = 0.5 \mu Sv$$
 (release of 250 MBq)



# <u>Upper</u> estimates for effective dose (windy weather, gaussian plume model)

wind speed: v = 5m/s

release rate:  $\dot{q} = 50 \text{ MBq/h}$  atmosperic stability: neutral



$$C(x) = \frac{\dot{q}}{\pi \cdot \mathbf{v} \cdot \sigma_{\mathbf{v}}(x) \cdot \sigma_{\mathbf{z}}(x)}$$

$$E_{50}(T) = C(400 \text{ m}) \cdot I \cdot e_{50} \cdot T = \frac{\dot{q} \cdot I \cdot e_{50} \cdot T}{\pi \cdot v \cdot \sigma_{v}(400 \text{ m}) \cdot \sigma_{z}(400 \text{ m})}$$

$$E_{50}(5h) = 0.02 \mu Sv$$
 (release of 250 MBq)



# <sup>36</sup>Cl in grass samples





#### Estimates of release of <sup>36</sup>Cl based on grass samples

| Sample | Model                                                       | Released  36Cl activity (detection limit)  [MBq] |  |
|--------|-------------------------------------------------------------|--------------------------------------------------|--|
| Close  | No-wind,<br>deposition velocity:<br>10 <sup>-3</sup> m/s    | 0,5                                              |  |
| Away   | Windy conditions deposition velocity:  10 <sup>-3</sup> m/s | 1<br>(wind towards point<br>of sampling)         |  |



#### Estimate of release of <sup>36</sup>Cl based on <sup>3</sup>H measurements

|                                       | ³H r                                            | <sup>36</sup> Cl release        |                                           |
|---------------------------------------|-------------------------------------------------|---------------------------------|-------------------------------------------|
| Period                                | Freezing<br>trap<br>concentra<br>tions<br>[GBq] | <sup>3</sup> H-monitor readings | From difference in <sup>3</sup> H-release |
| Cutting days with the best flow model | 58 ± 3                                          | 81 ± 18                         | 0,42 ± 0,33                               |



#### **Conclusions**

- Plasma cutting of DR3 reactor tank (with graphite behind)
   liberated <sup>36</sup>Cl from the place of cutting
- Chlorine is a leftover from pre-irradiation threatment of graphite
- Liberated <sup>36</sup>Cl was both in particulate and in gaseous form
- Gaseous <sup>36</sup>Cl can be released to the surrounding
- Conservative upper limit for released <sup>36</sup>Cl activity was estimated from gas monitor readings
- Conservative effective doses to persons in the surroundings from release of  $^{36}$ Cl were < 1  $\mu$ Sv
- Grass samples could not confirm that activity has been released to the surroundings
- <sup>3</sup>H in freezing trap could indicate <sup>36</sup>Cl release to surroundings



