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• Developing optimisation process

• Quantification from measurable physics
parameters towards more comprehensive and
effective clinical parameters

• Radiomics and machine-learning – providing
tools for quantification
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Adequate image
quality as a
fundamental
requirement

as low (dose)
as reasonably

achievable

Optimisation by comprehensive risk model
– combining clinical risk and radiation risk
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Minimum net risk
= Optimisation point

Clinical risk

Radiation risk

Total risk
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Radiation exposure (~radiation risk) or Image quality (~clinical risk)

Large amount of multi-
dimensional data with
complex correlations

Access to
representative

data?

Need for additional
data types for more

comprehensive
approach?

Samei, Järvinen, Kortesniemi et al. 2018
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Physical image quality
(DQE(MTF,NPS))

Diagnostic
accuracy (AUC)

Care
outcome

Detection or estimation
(d’(T,TTF,NPS,E,Ni))
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Physical image quality
(DQE(MTF,NPS))

Diagnostic
accuracy (AUC)

Detection or estimation
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OPTIMAL

SUB-
OPTIMAL

Typically no standardised
clinical imaging protocols
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vs
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Radiomics – method for quantification

Radiomics = field of medical study that aims to extract large
amount of quantitative features from medical images using data-

characterisation algorithms.

Machine learning = type of artificial intelligence that allows
software applications to become more accurate in predicting

outcomes without being explicitly programmed.

• For radiologists: Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep
Learning: A Primer for Radiologists. Radiographics. 2017 Nov-Dec;37(7):2113-2131.

• For physicists: Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep
learning in medical imaging and radiation therapy. Med Phys. 2019 Jan;46(1):e1-e36.
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Æ DETECTION
Æ LOCALISATION

Æ SEGMENTATION
Æ CLASSIFICATION

Æ OUTCOME PREDICTION

VARIOUS LEVELS OF MACHINE LEARNING TASKS
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Examples of machine learning in segmentation, labeling, clinical
image quality estimation and outcome prediction

Abdominal organ
segmentation
Abd CT data

CNN method
Gibson et al. 2017

Clinical image
quality in lung
Chest CT data

CNN method
Lee et al. 2018

Radiotoxicity
in liver

Body CT data
CNN method

Ibragimov et al. 2018
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Anatomical
labeling

Pediatric DR data
CNN method

P.H. Yi et al. 2019
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ROC AUC = 1.0
Reading speed: 33 DRs/sec

GROUND
TRUTH

Convolutional Neural Network (CNN) – Basic principle
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LIVER METASTASIS 92%

HEMANGIOMA 70%

SPLENOMEGALY 42%

CONV RELU POOL CONV RELU POOL FCL
fully connected layer

OUTPUT LAYER
Þ PREDICTIONS

INPUT
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BACK-PROPAGATION

4
UPDATE COEFFICIENTS

TRAINING:
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FOR ALL TRAINING DATA

Learning from mistakes
”Good judgement comes from experience,
experience comes from bad judgement.”

Training, validation & test data requirements:
• Enough (transfer learning, augmented data)
• Representative (class balance)
• Valid with reliable ground-truth labeling

mika.kortesniemi@hus.f i 12

Example training curve of CNN classifier

Lakhani et al. 2017

Chest radiograph with a
tuberculosis probability

heat map overlay

Final accuracy = 98.2%.
The loss on the validation is similar
to the training which indicates no

significant overfitting.

Tuberculosis in
chest radiographs
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Comprehensive optimisation by risk modelling - data flow in
clinical parameters, image quality and radiation dose
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Patient specific net risk
or benefit

Radiation risk

Anamnesis

Clinical status
findings

Prognosis

Lab data

Geneticdata

Medication

Histology data

(Previous)
Imaging findings

Clinical risk

Organ specific
cancer models

Organ models3D dose
distribution

Organ doses

Exposure source
model

Irradiation
event model Patient model

MTF or TTF
(spatial

resolution)

NPS (noise
texture)

Clinical task
model

Detectability
and AUCd’

Observer noise Eye function

Clinical data

Image quality Radiation dose
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• Larger scale
multimodal clinical
CNN architecture may
accept input from a
variety of data types
(images, time-series,
lab data,…)

• Useful featurisation for
each separate data
type is learned in
lower-level towers of
CNN

• The feature maps from
each tower are then
merged and brought
through higher CNN
layers Þ inference
across data types

mika.kortesniemi@hus.f i 16Litjens 2017

MAMMO MASS BRAIN LESION AIRWAY TREE BREAST CANCER

RETINOPATHY PROSTATE LUNG NODULE SKIN LESION

Medical imaging applications in which deep learning has achieved state-of-the-art results
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Exponentially increasing number of radiology DL research papers 2012-2018
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Google Scholar search: 19 Feb 2019

”Radiology”; ”Deep learning”
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Challenges of deep learning methods
from imaging data to clinical parameters

Litjens 2017, Suzuki 2017

1) Access to the training/validation/test data:
technical, ethical and legal issues to be solved

2) Data QA and labeling: validation and standardisation of
data, multi-dimensionality and heterogeneity of the data

sources, provision of data labeling and annotations.

MTF AUC Sd’

GROUND TRUTH

TRAINING
VALIDATION

TESTING
PROSPECTIVE TRIALS
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Need for clinical verification and validation

E.L. Ridley - AuntMinnie news 2018, Samei, Järvinen, Kortesniemi et al. 2018, ISO 9000, B. Boehm 1981

AI technology shows considerable potential for aiding
radiology's transition to value-based healthcare, but these
methods must be verified & validated Þ shown to provide
quantifiable benefits:
• improving care outcome
• increasing health
• reducing costs
• streamlining processes
• avoiding errors (patient safety)
• ensuring consistent quality Verification = Are you building it right?

Validation = Are you building the right thing?
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DIAGNOSTIC ACCURACY

Aiming to care process
which is:

• Predictive
• Personalised

• Objective
• Consistent
(standardised)

• Quantitative
(measurable)

• Optimised by
validated data

Thank you
Kiitos

Quantified imaging quality chain towards clinical level:
Æ Higher diagnostic accuracy and effectiveness
Æ Provision of imaging biomarkers relevant to care outcome
Æ Support for continual decision-making process in healthcare

- PREDICTIVE · PERSONALISED · PREVENTIVE -
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