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» Radiomics and machine-learning — providing
tools for quantification
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Optimisation by comprehensive risk model
— combining clinical risk and radiation risk
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Radiomics — method for quantification

Radi

» DETECTION
» L OCALISATION
» SEGMENTATION
» CLASSIFICATION

VARIOUS LEVELS OF MACHINE LEARNING TASKS

Radiomics — method for quantification

Radiomics = field of medical study that aims to extract large
amount of quantitative features from medical images using data-

characterisation algorithms.

Machine learning = type of artificial intelligence that allows
software applications to become more accurate in predicting
outcomes without being explicitly programmed.

Examples of machine learning in segmentation, labeling, clinical
image quality estimation and outcome prediction
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» OUTCOME PREDICTION
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Convolutional Neural Network (CNN) — Basic principle
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Learning from mistakes

"Good judgement comes from experience,
experience comes from bad judgement.”

INPUT

Training, validation & test data requirements:
« Enough (transfer learning, augmented data)
* Representative (class balance)

« Valid with reliable ground-truth labeling
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LIVER METASTASIS 92%

HEMANGIOMA 70%

BACK-PROPAGATION

Gibson etal. 2017 P.H. Yietal 2019

Example training curve of CNN classifier
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Final accuracy = 98.2%.
The loss on the validation is similar
to the training which indicates no
significant overfitting.

Accuracy (%]

® |oss (train)
= accuracy (val)
u loss (val)

100

in liver
Body CT data
CNN method
Ibragimov et al. 2018
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Clinical data

Comprehensive optimisation by risk modelling - data flow in
(previous) clinical parameters, image quality and radiation dose
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Medical imaging applications in which deep learning has achieved state-of-the-art results

RETINOPATHY

Challenges of deep learning methods
from imaging data to clinical parameters

1) Access to the training/validation/test data:
technical, ethical and legal issues to be solved

2) Data QA and labeling: validation and standardisation of

data, multi-dimensionality and heterogeneity of the data
sources, provision of data labeling and annotations.
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Exponentially increasing number of radiology DL research papers 2012-2018
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Need for clinical verification and validation

Al technology shows considerable poténtial for aiding
radiology's transition to, value-based ‘healthcare, but these
methods must be verified & validated: = shown to provide
guantifiable benefits:
improving care outcome: %
increasing health
reducing costs
streamlining processes
avoiding errors (patient safety)
ensuring consistent quality

Verification="Are you building it right?
Validation = Are you building the right thing?
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Aiming to care process
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