New Danish research laboratory for medical dosimetry

Claus E. Andersen Jakob Helt-Hansen Lars R. Lindvold Bent Lauritzen

+ 4 PhD's

Center for Nuclear Technologies Technical University of Denmark Risø Campus, Build. 201 Frederiksborgvej 399 4000 Roskilde, Denmark

clan@dtu.dk

Duration: 20 min

UIU

Outline

Laboratory for Fundamental Medical Dosimetry

1. Radiation sources and research objectives.

2. Specific details (mainly related to calibration system).

3. Radiation protection measurement in pulsed beams.

Donation (21. juni 2012) from:

The John and Birthe Meyer Foundation

Accelerator, cobalt irradiation facility and advanced instrumentation.

The overall objective for the laboratory:

To support development and introduction of new forms of radiotherapy on Danish hospitals and to contribute to the maintenance of high standards for patient safety during modern radiotherapy.

Varian Truebeam linear accelerator system

Full imaging (kV, MV, gating) Eclipse TPS Developer mode Photon beams: 4, 6, 10, 15 and 18 MV FFF photon beams: 6 and 10 MV Electron beams: 6, 9, 12, 15, 16, 18, and 20 MeV Terabalt (UJP Praha, Czech Republic) Cobalt-60 source

455 TBq activity

Fixed horizontal beam

Full computer control

Other irradiation facilities at DTU Nutech

Types of research at the new laboratory:

1. Detector oriented research

Organic scintillator dosimetry

Alanine dosimetry

3D optical dosimetry

2. Clinically oriented projects

Lung tumor dosimetry

3. Calibrations and standards

Accredited calibrations and measurements

Standards for accelerator dosimetry

Audit methods

Project examples:

Research projects within EURAMET

Small-field dosimetry (Danish Research Council)

Radiobiology

Mikael Jensen Torsten Groesser Pil Fredericia (Hevesy Laboratory)

The DTU Nutech course "Medical Radiation Dosimetry" provides the theoretical and metrological background for measurement of radiation doses in radiotherapy, diagnostic radiology, and nuclear medicine. The five-day intensive course is based on the classic textbook by F.H. Attix and supplementary material.

Platoon 6 (June 15-19, 2015)

Details about

the cobalt source calibration system

Absorbed dose to water calibration procedure

 $d = 5 g/cm^2$

SAD = 100 cm

 $A_0 = 10 \text{ x} 10 \text{ cm}^2$

Need cobalt to:

- calibrate one chamber against another (substitution method)
- calibrate chamber against standard

Alignment telescope

.

Hal

20

....

Characterizing the cobalt source (one example)

Collimator reproducibility

Order of collimator settings (first 4 h)

Order of collimator settings

Sensitivity coefficient: (0.14 +/- 0.01) % pr. mm

Radiation protection

in pulsed beams

Motivations:

(1) NSFS

(2) previous experience

(3) no specification from manufacturer

Spherical ionization chamber

Accelerator

Table 1 Measurement results and standard uncertainties for the two spherical ionization chambers (1 L and 10 L) and the Ludlum 9DP* survey meter in scattered beams from the medical accelerator and the cobalt source at the reference position shown in Fig. 1 and 4. The phantom dose was measured with a thimble chamber.

Beam	Phantom
	dose
	Gy
4 MV	4.0
6 MV	8.5
10 MV	9.4
15 MV	9.8
18 MV	10.2
6 MV, FFF	8.0
10 MV, FFF	9.0
Cobalt-60	-

FFF = Flattening Filter Free

Beam	Phantom	Irradiation	Pulse	No. of						
	dose	time	width	pulse	pulses					
	Gy	S	μs	ms						
4 MV	4.0	120	3.7	2.5	48.1x10 ³					
6 MV	8.5	120	3.7	3.3	36.0x10 ³					
10 MV	9.4	120	3.5	3.3	36.0x10 ³					
15 MV	9.8	120	3.2	6.7	18.0x10 ³					
18 MV	10.2	120	2.9	6.7	18.0x10 ³					
6 MV, FFF	8.0	150	4.4	4.9	30.9x10 ³					
10 MV, FFF	9.0	150	4.1	8.3	18.0x10 ³					
Cobalt-60	-	-	-	-	-					
FFF = Flatteni	ng Filter Free				I					
		γ								
		Tin wit	Time structure measured with ME40 + oscilloscope							

Beam	Phantom	Irradiation	Pulse	Pulse-to-	No. of	H*(10)
	dose	time	width	pulse	pulses	1 L
	Gy	S	μs	ms		μSv/h
4 MV	4.0	120	3.7	2.5	48.1x10 ³	260 ± 30
6 MV	8.5	120	3.7	3.3	36.0x10 ³	480 ± 50
10 MV	9.4	120	3.5	3.3	36.0x10 ³	380 ± 40
15 MV	9.8	120	3.2	6.7	18.0x10 ³	910± 100
18 MV	10.2	120	2.9	6.7	18.0x10 ³	1600 ± 180
6 MV, FFF	8.0	150	4.4	4.9	30.9x10 ³	240 ± 30
10 MV, FFF	9.0	150	4.1	8.3	18.0x10 ³	180 ± 20
Cobalt-60	-	-	-	-	-	67 ± 7

FFF = Flattening Filter Free

Spherical chamber calibrated in Co-60 beam for air kerma, free in air converted to ambient dose equivalent H*(10) using a conversion coefficient of 1.2 Sv/Gy (reservation: energy spectrum and angular dependency).

Beam	Phantom	Irradiation	Pulse	Pulse-to-	No. of	H*(10)	H*(10)
	dose	time	width	pulse	pulses	1 L	10 L
	Gy	S	μs	ms		μSv/h	μSv/h
4 MV	4.0	120	3.7	2.5	48.1x10 ³	260 ± 30	260 ± 30
6 MV	8.5	120	3.7	3.3	36.0x10 ³	480 ± 50	500 ± 60
10 MV	9.4	120	3.5	3.3	36.0x10 ³	380 ± 40	400 ± 40
15 MV	9.8	120	3.2	6.7	18.0x10 ³	910 ± 100	930 ± 100
18 MV	10.2	120	2.9	6.7	18.0x10 ³	1600 ± 180	1700 ± 180
6 MV, FFF	8.0	150	4.4	4.9	30.9x10 ³	240 ± 30	250 ± 30
10 MV, FFF	9.0	150	4.1	8.3	18.0x10 ³	180 ± 20	190 ± 20
Cobalt-60	-	-	-	-	-	67 ± 7	67 ± 7
FFF = Flatteni	ng Filter Fre	e					

Beam	Phantom	Irradiation	Pulse	Pulse-to-	No. of	H*(10)	H*(10)	H*(10)
	dose	time	width	pulse	pulses	1 L	10 L	9DP*
	Gy	S	μs	ms		μSv/h	μSv/h	μSv/h
4 MV	4.0	120	3.7	2.5	48.1x10 ³	260 ± 30	260 ± 30	240 ± 30
6 MV	8.5	120	3.7	3.3	36.0x10 ³	480 ± 50	500 ± 60	440 ± 40
10 MV	9.4	120	3.5	3.3	36.0x10 ³	380 ± 40	400 ± 40	330 ± 30
15 MV	9.8	120	3.2	6.7	18.0x10 ³	910± 100	930 ± 100	770 ± 80
18 MV	10.2	120	2.9	6.7	18.0x10 ³	1600 ± 180	1700 ± 180	1500 ± 150
6 MV, FFF	8.0	150	4.4	4.9	30.9x10 ³	240 ± 30	250 ± 30	220 ± 20
10 MV, FFF	9.0	150	4.1	8.3	18.0x10 ³	180 ± 20	190 ± 20	170 ± 20
Calatte CO						(7) 7		(2 + 0)
Cobalt-60	-	-	-	-	-	$6/\pm /$	6/±/	62 ± 6
FFF = Flattenin	ng Filter Fre	e						•
							1	
						Ludlun	n 9DP*	

Radiation protection

Dose rate around the accelerator after 4000 MU of 18 MV (40 Gy)

A somewhat unexpected result

Datalogging 1 record pr. 5 s

Positioned after beam stop

(i.e. instruments were not activated).

Dose rate around the accelerator after 4000 MU of 18 MV (initial 1.5 h)

Dose rate around the accelerator after 4000 MU of 18 MV (after 5 h)

Dose rate around the accelerator after 4000 MU of 18 MV (log scale)

Conclusions

- A laboratory for medical dosimetry has been established. Only few countries have similar facilities.
- Three types of research: (1) Detector projects, (2) Clinical projects, and (3) Calibration and standards (+ radiobiology).
- Showed: Automated cobalt calibration details
- Designed simple test stand for radiation prot. measurements in pulsed beams.
- Found relatively high dose rates due to induced activity after long 18 MV irradiations. 9/28/2015