Radiation safety of the Danish Center for Proton Therapy (DCPT)

Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

midtregionmidtjylland

Rationale of proton therapy

Dose deposition versus depth in patient:

Intense localized dose deposition = Bragg peak

Aarhus University Hospital 👌

The Danish Center for Proton Therapy (DCPT)

- National center for all Danish patients referred to proton therapy
- Located at Aarhus University Hospital in Skejby
- 3 treatment rooms with gantry and one fixed-beam research room
- Proton therapy system is based on a 250 MeV cyclotron from Varian Medical Systems

Time line:

- August 2015: Selection of contractor for the building
- July 2017: Installation of equipment
- October 2018: First patient

midtregionmidtjylland

Layout of DCPT treatment bunker

Secondary radiation

Main radiation hazards: Neutrons + induced radioactivity

Neutron source = Location with large proton loss

Secondary neutron spectrum

Energy distributions of neutrons generated by 250-MeV protons:

Radiation Protection Dosimetry (2009), Vol. 137, No. 1–2, pp. 167–186

Neutron interactions in shielding barrier

midt regionmidtjylland

High energy neutron interactions

Lowest neutron interaction probability >50 MeV

Total neutron reaction cross section:

-C-12

-Mg-24 -Si-28

—Fe-56

MeV 50

H-1

AI-27 Ca-40

1.E+03

1.E+04

Neutron energy (eV)

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Aarhus University Hospital 👌

shielding thickness

High-energy neutron reaction rate

- Low/medium atomic mass: The reaction rate is mainly determined by density · wall thickness (total weight)
- High atomic mass: Less efficient shielding per unit mass

 \Rightarrow Concrete is an efficient shielding material (only low/medium atomic mass)

Why concrete shielding for DCPT?

- Efficient shielding of high-energy neutrons (>50 MeV) by low/medium atomic masses
- Very good structural properties
- Relatively cheap material per mass unit
- High hydrogen content providing efficient neutron energy loss
- Well-known material used for almost all existing proton therapy facilities

Modelling of neutron attenuation in concrete

Aarhus University Hospital 👌

Exponential attenuation model

Neutron ambient dose equivalent from point source:

$$H(E_{\rm p},\theta,d/\lambda) = \frac{H_0(E_{\rm p},\theta)}{r^2} \exp\left[-\frac{\rm d}{\lambda(\theta)g(\alpha)}\right]$$

 H_0 and λ are determined from Monte-Carlo simulations

midt regionmidtjylland,

E_p: Proton energy

- r: Distance to the radiation source (m)
- θ : Angle with respect to incident beam
- H_0 : Dose source term per proton
- d: Density-weighted shield thickness (g/cm²)
- $\lambda(\theta)$: Attenuation length (g/cm²)
- g(θ): Forward wall: cos(θ): Lateral wall: sin(θ)

Example: Dose calculation for DCPT bunker

Aarhus University Hospital 👌

Induced radioactivity in building structures

Most common long-lived radionuclides in concrete and steel:

Radionuclide	Dominant reactions	Half life	Material	Expected main contributors to residual radioactivity
¹³⁴ Cs	¹³⁴ Ba(n,p), ¹³³ Cs(n,g)	2.06 yr	Barite concrete	
²² Na	²³ Na(n,2n), ²⁷ Al(n,2p4n)	2.60 yr	Concrete	Long-term
⁶⁰ Co	⁵⁹ Co(n,γ)	5.27 yr	Concrete, steel	Long-term
¹⁵⁴ Eu	¹⁵³ Eu(n,γ)	8.59 yr	Concrete	
³ Н	Spallation of N and O	12.3 yr	Concrete	
¹⁵² Eu	¹⁵¹ Eu(n,γ)	13.5 yr	Concrete	Long-term

Co, Eu:

High capture σ + Half live > 5 yr \Rightarrow Longlived activation (decommissioning issue)

Allowed content of Eu and Co in concrete at the cyclotron and ESS:

- Eu: Weight fraction < 0.5 ppm
- Co: Weight fraction < 20 ppm

midtregionmidtjylland

Activation of air

Air activation

Most common radionuclides produced by neutrons in air:

H-3Spallation of O12.3 yearsβ-, No gamma radiationBe-7Spallation of O53.3 daysEC, 0.5 MeV (10 %)C-11Spallation of O20.4 minEC β+, No gamma radiationN-13Spallation of O9.97 minEC β+, No gamma radiation
Be-7Spallation of O53.3 daysEC, 0.5 MeV (10 %)C-11Spallation of O20.4 minEC β^+ , No gamma radiationN-13Spallation of O9.97 minEC β^+ , No gamma radiation
C-11Spallation of O20.4 minEC $β^+$, No gamma radiationN-13Spallation of O9.97 minEC $β^+$, No gamma radiation
N-13 Spallation of O 9.97 min EC β^+ , No gamma radiation
O-14 Spallation of O 1.18 min EC β ⁺ , 2.3 MeV (99%)
O-15 Spallation of O 2.04 min EC β^+ , No gamma radiation
F-18 ¹⁸ O(p,n) ¹⁸ F 1.83 hour EC β^+ , No gamma radiation
Ar-4140Ar(n,γ)1.82 hourβ-, 1.3 MeV (99%)

Short lifetime!

Aarhus University Hospital 👌

Discharge of activated air

Legal requirement:

• The dose to individuals in the population < 0.1 mSv/year

Design of DCPT ventilation system:

- Air discharge should be located > 50 m from any building air intake
- Air from the cyclotron and ESS bunker should be transported to the far end of the beamline ⇒ Decay of radionuclides before air discharge
- Continuous monitoring of discharged air by a radiation detector.

Activation of cooling water

Cooling water activation

midt region midtjylland

Most common radionuclides produced by neutrons in water:

Nuclide	Dominant production reaction	Half-life	Dominant decay reaction and dominant gamma energies
H-3	Spallation of O	12.3 years	β^{-} , No gamma radiation
Be-7	Spallation of O	53.3 days	EC, 0.5 MeV (10 %)
C-11	Spallation of O	20.4 min	EC β^+ , No gamma radiation
N-13	Spallation of O	9.97 min	EC β^+ , No gamma radiation
O-14	Spallation of O	1.18 min	EC β ⁺ , 2.3 MeV (99%)
O-15	Spallation of O	2.04 min	EC β^+ , No gamma radiation
F-18	¹⁸ O(p,n) ¹⁸ F	1.83 hour	EC β^+ , No gamma radiation

Design of DCPT cooling water system

Special design features \Rightarrow

Reduce radiation risk from activated cooling water

Thankyou for your attention

