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Rationale of proton therapy
Dose deposition versus depth in patient:

Bragg peak position: Initial proton energy

Intense localized dose 
deposition =
Bragg peak

Cancer 
target



The Danish Center for Proton Therapy (DCPT)

• National center for all Danish 
patients referred to proton therapy

• Located at Aarhus University 
Hospital in Skejby

• 3 treatment rooms with gantry and 
one fixed-beam research room

• Proton therapy system is based on 
a 250 MeV cyclotron from Varian 
Medical Systems 

Time line:
• August 2015: Selection of contractor 

for the building
• July 2017: Installation of equipment
• October 2018: First patient



Layout of DCPT treatment bunker
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• Degrader: Energy adjustment
• ESS: Energy selection system
• Gantry: Variable treatment angle

Treatment room



Secondary radiation
Intra-nuclear cascade

(forward-peaked emission)

Evaporation (isotropic emission)

Head-on collision of 
high energy proton with 

atomic nucleus

Single particle 
knockout

Main radiation hazards: Neutrons + induced radioactivity

Excitation of 
whole nucleus



Main neutron sources
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Neutron source = Location with large proton loss 



Secondary neutron spectrum

Evaporation Intra-
nuclear 
cascade

Low energy peak (~1 MeV):
• Evaporation neutrons
• Only present for heavy 

elements (high nuclear level 
density)

• Emitted isotopically
High-energy peak (~100 MeV):
• Intra-nuclear cascade neutrons
• Mainly emitted in the forward 

direction with respect to the 
incident proton beam

Radiation Protection Dosimetry (2009), Vol. 137, No. 1–2, pp. 167–186

Energy distributions of neutrons generated by 250-MeV protons: 



Neutron interactions in shielding barrier 

>10 MeV:
Non-elastic 
interactions1 eV-10 MeV: Elastic scattering (mainly hydrogen)

<1 eV (thermal energy):
• Elastic collisions
• Neutron capture

Evaporation
neutrons

Intra-
nuclear 
cascade
neutrons

H-1

Elastic scattering ⇒ Neutron energy loss
Neutron capture

Neutron 
absorption



High energy neutron interactions

Evaporation
neutrons Intra-nuclear 

cascade
neutrons

Lowest neutron interaction probability >50 MeV

⇒ Neutrons with energies >50 MeV drive the 
shielding thickness

50
 M

eV

Total neutron reaction 
cross section: 



High-energy neutron reaction rate

O-16
Al-27

Si-28

Ca-40

Fe-56

• Low/medium atomic mass: The reaction rate is mainly determined by 
density ⋅ wall thickness (total weight)

• High atomic mass: Less efficient shielding per unit mass

Low/medium
atomic mass

High
atomic mass

⇒ Concrete is an efficient shielding material (only low/medium atomic mass)



Why concrete shielding for DCPT?
• Efficient shielding of high-energy neutrons (>50 MeV) by 

low/medium atomic masses

• Very good structural properties

• Relatively cheap material per mass unit

• High hydrogen content providing efficient neutron energy loss

• Well-known material used for almost all existing proton therapy 
facilities



Modelling of neutron attenuation in concrete
Fixed neutron spectrum 
beyond 1-2 m depth in 

concrete

Neutron equilibrium

250 MeV protons on iron target:

Concrete

No equilibrium 
at low depth: 

Many low 
energy 

neutrons

Exponential attenuation of 
neutron dose



Exponential attenuation model
Neutron ambient dose equivalent from point source:

Ep: Proton energy
r: Distance to the radiation source (m)
θ:  Angle with respect to incident beam
H0: Dose source term per proton
d: Density-weighted shield thickness (g/cm2)
λ(θ): Attenuation length (g/cm2)
g(θ): Forward wall: cos(θ): Lateral wall: sin(θ)

θ

Beam loss

d

r

H0 and λ are 
determined from 
Monte-Carlo 
simulations

Wall



Example: Dose calculation for DCPT bunker



Induced radioactivity in building structures
Most common long-lived radionuclides in concrete and steel:

Radionuclide Dominant reactions Half life Material
Expected main 

contributors to residual 
radioactivity

134Cs 134Ba(n,p), 133Cs(n,g) 2.06 yr Barite concrete
22Na 23Na(n,2n), 27Al(n,2p4n) 2.60 yr Concrete Long-term
60Co 59Co(n,γ) 5.27 yr Concrete, steel Long-term
154Eu 153Eu(n,γ) 8.59 yr Concrete

3H Spallation of N and O 12.3 yr Concrete
152Eu 151Eu(n,γ) 13.5 yr Concrete Long-term

Co, Eu:
High capture σ + Half live > 5 yr ⇒ Long-
lived activation (decommissioning issue)

Allowed content of Eu and Co in concrete 
at the cyclotron and ESS:
• Eu: Weight fraction < 0.5 ppm
• Co: Weight fraction < 20 ppm



Activation of air

Nuclide Dominant production 
reaction Half-life Dominant decay reaction and 

dominant gamma energies
H-3 Spallation of O 12.3 years β-, No gamma radiation
Be-7 Spallation of O 53.3 days EC, 0.5 MeV (10 %)
C-11 Spallation of O 20.4 min EC β+, No gamma radiation
N-13 Spallation of O 9.97 min EC β+, No gamma radiation
O-14 Spallation of O 1.18 min EC β+, 2.3 MeV (99%)
O-15 Spallation of O 2.04 min EC β+, No gamma radiation
F-18 18O(p,n)18F 1.83 hour EC β+, No gamma radiation
Ar-41 40Ar(n,γ) 1.82 hour β-, 1.3 MeV (99%)

Most common radionuclides produced by neutrons in air: 

Air activation

Short lifetime!



Discharge of activated air
Legal requirement:
• The dose to individuals in the population < 0.1 mSv/year

Design of DCPT ventilation system:
• Air discharge should be located > 50 m from any building air intake

• Air from the cyclotron and ESS bunker should be transported to the far 
end of the beamline ⇒ Decay of radionuclides before air discharge

• Continuous monitoring of discharged air by a radiation detector.

CyclotronESSBeamline

Radiation 
detector



Activation of cooling water

Most common radionuclides produced by neutrons in water: 

Cooling water activation

Nuclide Dominant production 
reaction Half-life Dominant decay reaction and 

dominant gamma energies
H-3 Spallation of O 12.3 years β-, No gamma radiation
Be-7 Spallation of O 53.3 days EC, 0.5 MeV (10 %)
C-11 Spallation of O 20.4 min EC β+, No gamma radiation
N-13 Spallation of O 9.97 min EC β+, No gamma radiation
O-14 Spallation of O 1.18 min EC β+, 2.3 MeV (99%)
O-15 Spallation of O 2.04 min EC β+, No gamma radiation
F-18 18O(p,n)18F 1.83 hour EC β+, No gamma radiation



Design of DCPT cooling water system

Proton beam

Cooling water

Magnet MagnetMagnetMagnet MagnetMagnet

Primary loop
Secondary loop

Water 
collection
system

Check of water 
activation

Water leak
Heat exchanger:

Special design features ⇒

Controlled area:
Only access of trained 
personnel to activated water

Reduce radiation risk from activated 
cooling water



Thankyou for your attention
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