
#### Application of Rapid and Automated Techniques in Radiochemical Analysis ---Inspirations from NKS-B Rapid-Tech Project

Jixin Qiao



**DTU Nutech** Center for Nuclear Technologies

#### NKS-B Rapid-tech project [AFT/B(14)7]



 Funded by Nordic Nuclear Safety Research (NKS) for 2014-2016

#### • Partners:

Jixin Qiao, Kai Xu---DTU Nutech, Technical University of Denmark, Denmark

Petra Lagerkvist, Sofia Josson, Stina Holmgren---FOI, CBRN Defence and Security, Sweden

Rajdeep Singh Sidhu---IFE, Institute for Energy Technology, Norway

Iisa Outola, Pia Vesterbacka, Kaisa Vaaramaa---STUK, Radiation and Nuclear Safety Authority, Finland



#### **Project objectives**

- To explore the application of different rapid techniques in determination of radionuclides, thus to improve the analytical efficiency of present radioanalytical methods in the areas of E, W and R.
- Specific tasks:
- Identification of current needs and problems in methodology development for rapid determination of <sup>90</sup>Sr and actinides.
- Identification of individual processes wherein rapid techniques can be potentially applied to improve the analytical efficiency.



| No. | Rapid techniques                                                                                                    |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--|
| 1   | Flow injection (FI)/sequential injection (SI)                                                                       |  |
| 2   | High performance liquid chromatography (HPLC)                                                                       |  |
| 3   | Vacuum box system                                                                                                   |  |
| 4   | On-line detection (FI-ICPMS, HPLC-ICPMS)                                                                            |  |
| 5   | other effective sample treatment approaches<br>(microwave assisted digestion, alkaline<br>fusion, co-precipitation) |  |



Flow/sequential injection chromatographic separation:

#### Flow injection (FI) system:

- Peristaltic pump
- Continuous flow

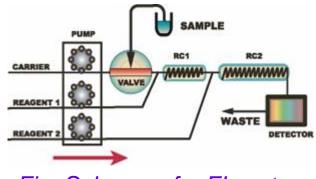



Fig. Scheme of a FI system

#### Sequential injection (SI) system:

- Syringe pump
- Selection valve

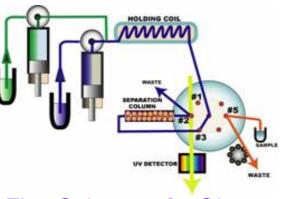
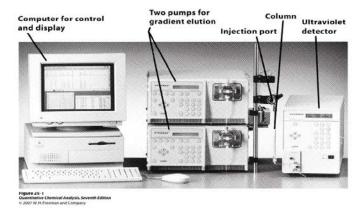



Fig. Scheme of a SI system



| No. | Rapid techniques                                                                                                    |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--|
| 1   | Flow injection (FI)/sequential injection (SI)                                                                       |  |
| 2   | High performance liquid chromatography (HPLC)                                                                       |  |
| 3   | Vacuum box                                                                                                          |  |
| 4   | On-line detection (FI-ICPMS, HPLC-ICPMS)                                                                            |  |
| 5   | other effective sample treatment approaches<br>(microwave assisted digestion, alkaline<br>fusion, co-precipitation) |  |




#### High performance liquid chromatography (HPLC):

#### Advantages:

- Fully automated
- Can be connected directly with MS

#### **Disadvantages:**

- Only handle small samples
- Single sample processing
- High cost



HPLC system



| No. | Rapid techniques                                                                                                    |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--|
| 1   | Flow injection (FI)/sequential injection (SI)                                                                       |  |
| 2   | High performance liquid chromatography (HPLC)                                                                       |  |
| 3   | Vacuum box system                                                                                                   |  |
| 4   | On-line detection (FI-ICPMS, HPLC-ICPMS)                                                                            |  |
| 5   | other effective sample treatment approaches<br>(microwave assisted digestion, alkaline<br>fusion, co-precipitation) |  |



#### Vaccum box:

#### Advantages:

- Multi-sample processing
- Easy operation
- Low cost
- Flexible

#### **Disadvantages:**

Need human attention



**Eichrom vaccum box** 



| No. | Rapid techniques                                                                                                    |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--|
| 1   | Flow injection (FI)/sequential injection (SI)                                                                       |  |
| 2   | High performance liquid chromatography (HPLC)                                                                       |  |
| 3   | Vacuum box system                                                                                                   |  |
| 4   | On-line detection (FI-ICPMS, HPLC-ICPMS)                                                                            |  |
| 5   | other effective sample treatment approaches<br>(microwave assisted digestion, alkaline<br>fusion, co-precipitation) |  |



Alkaline fusion --- Rapid sample pre-treatment techniques for solid samples:

Fluxes can be used for alkaline fusion:

- NaOH
- Na<sub>2</sub>O<sub>2</sub>
- NaCO<sub>3</sub>
- LiBO<sub>2</sub>
- Others



Busen burner



Katanax automatic electric fluxer



## Co-precipitation --- Rapid sample pre-treatment for liquid samples:

- Carbonates (e.g.,CaCO<sub>3</sub>)
- Oxalates (e.g., CaC<sub>2</sub>O<sub>4</sub>)
- Hydroxides (e.g., Fe(OH)<sub>3</sub>)
- Oxides (e.g., MnO<sub>2</sub>)
- Phosphates (e.g., Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, BiPO<sub>4</sub>)
- Others (e.g., AMP for Cs)

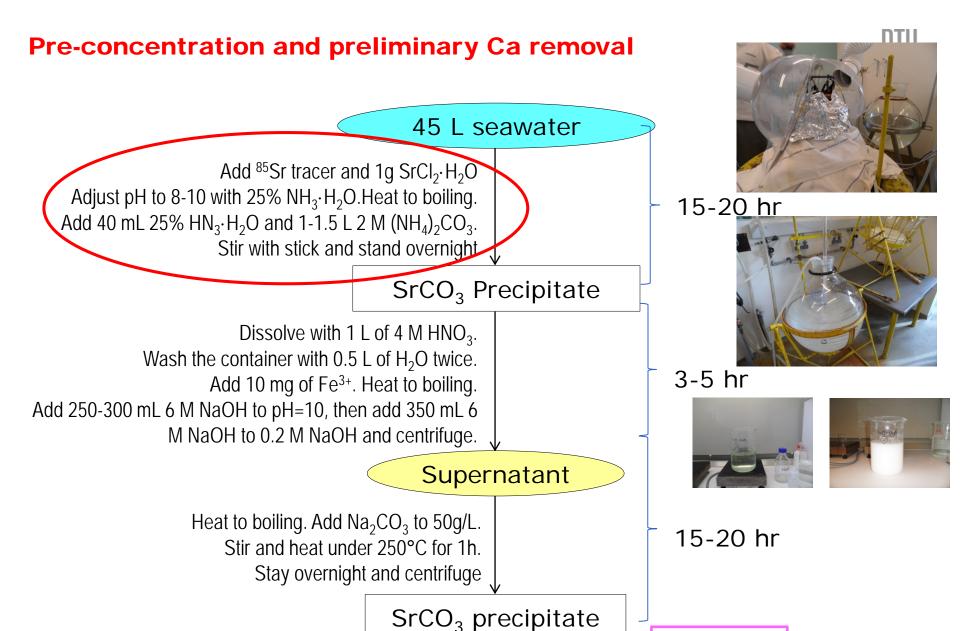


#### $Fe(OH)_3$ co-precipitation



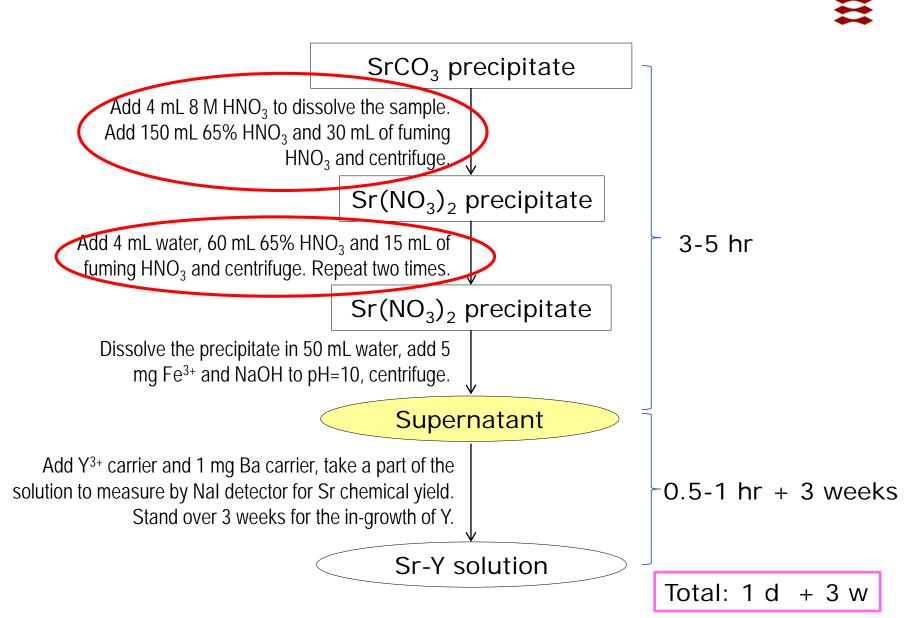
 $CaCO_3$  co-precipitation

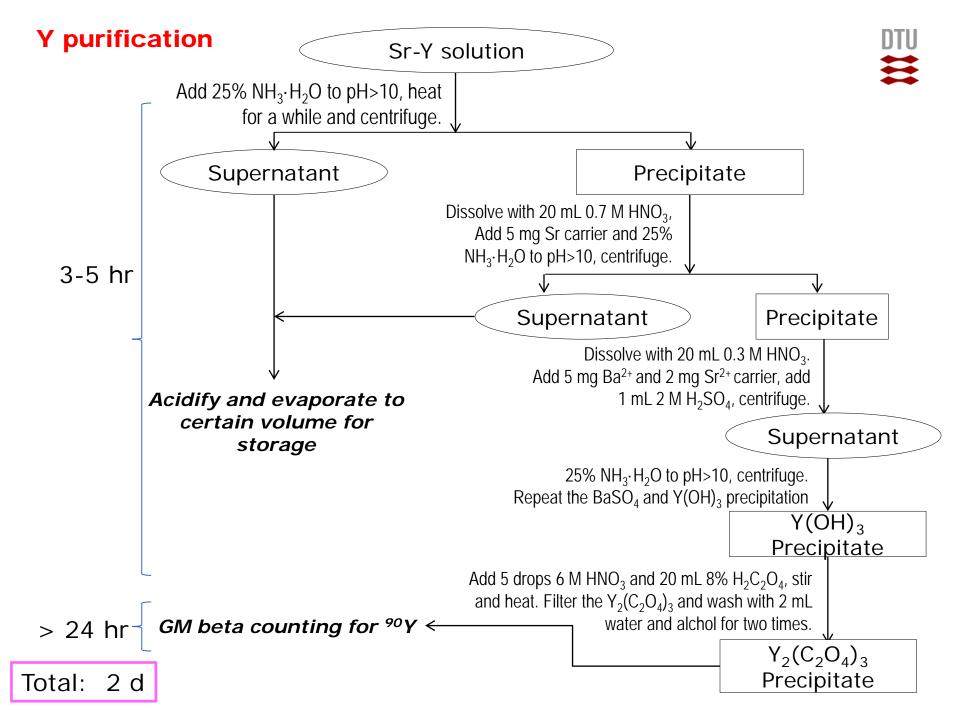



CaC<sub>2</sub>O<sub>4</sub> co-precipitation



#### NKS-B Rapid-tech project 2014-2015


- Current analytical methods for Sr and actinides were screened among participating institutes.
- Conclusions:
- 1) Current application of novel automated techniques in Nordic countries is very limited.
- 2) There is a need for end users to become more aware of the advantages of improved techniques for radiochemical assays.


#### •Example: <sup>90</sup>Sr determination for 45 L seawater (DTU-Nutech routine analysis)



Total: 2 d

#### **Further Ca removal and purification**





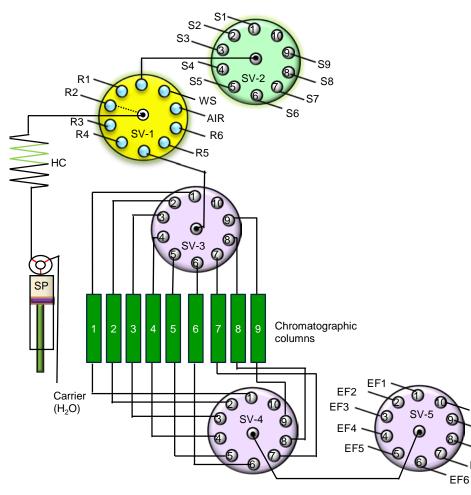
#### Performance evaluation and potential improvement



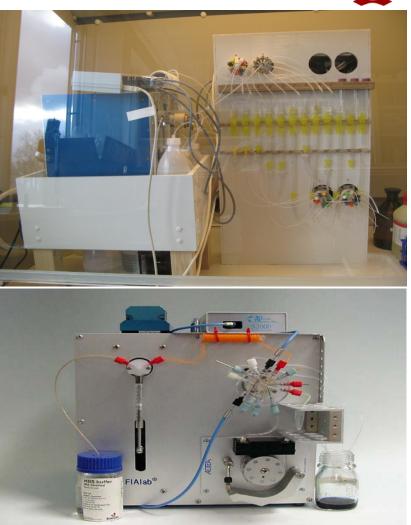
#### **Advantages**

Robust, high applicability, high precision and accuracy, relatively low LOD (5 mBq)

| Disadvantage                                          |                                                             |                                                              |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Item                                                  | Detailed problem                                            | Possible solution                                            |  |  |  |
| Low safety factor                                     | highly toxic chemical $(NH_4)_2CO_3$                        | CaC <sub>2</sub> O <sub>4</sub> co-precipitation, room temp. |  |  |  |
|                                                       | noxious and<br>corrosive fuming<br>nitric                   | Repeated application of NaOH for removal of Ca               |  |  |  |
| Low efficiency<br>(Analytical turnover >5             | Repeated Sr(NO <sub>3</sub> ) <sub>2</sub><br>precipitation | Application of Sr resin                                      |  |  |  |
| days excluding 3-week<br>ingrowth of <sup>90Y</sup> ) | Long waiting time<br>for <sup>90</sup> Y ingrowth           | Direct counting of <sup>90</sup> Sr by LSC                   |  |  |  |
| High labor intensity                                  | Manual operation                                            | Flow/sequential injection                                    |  |  |  |


#### **Sequential injection unit**

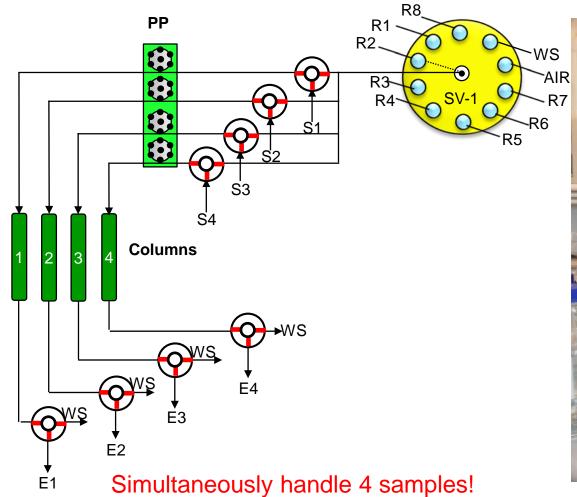
WS

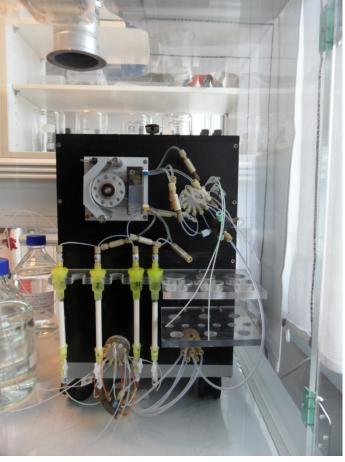

F9

EF8






#### Automatically handle 9 samples! Work overnight !




<u>Qiao, J. X.</u>, Hou, X. L., Roos, P., Miró, M. Analytica Chimic Acta. 2011.

#### Flow injection unit







<u>Qiao, J. X.</u>, Shi, K. L., Hou, X. L., Nielsen, S., Roos, P. Environmental Science & Technology. 2013.

#### Conclusions

- •More efforts are needed to improve the application of automated and rapid techniques in radiochemical analysis
- •More support from NKS or other foundations for future projects
- More communication and collaboration among Nordic and international labs



# Thank you!