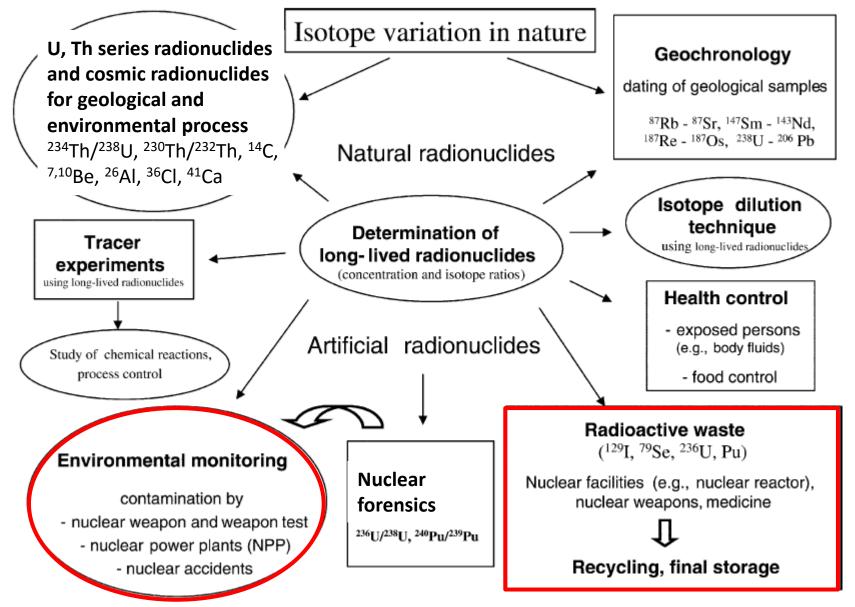


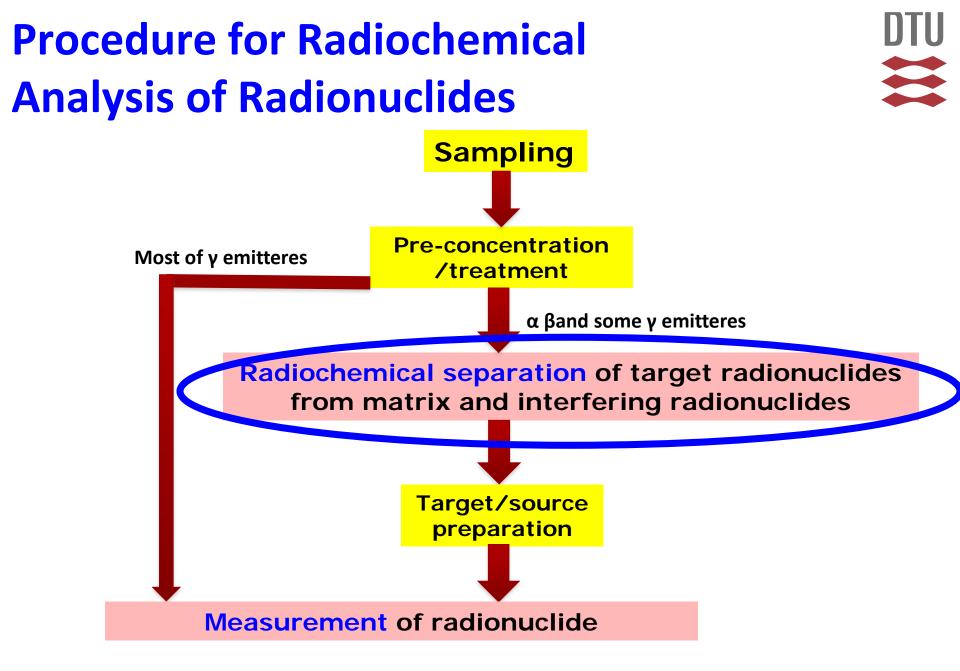
Radiochemical Analysis of Important Radionuclides in Nordic Nuclear Industry

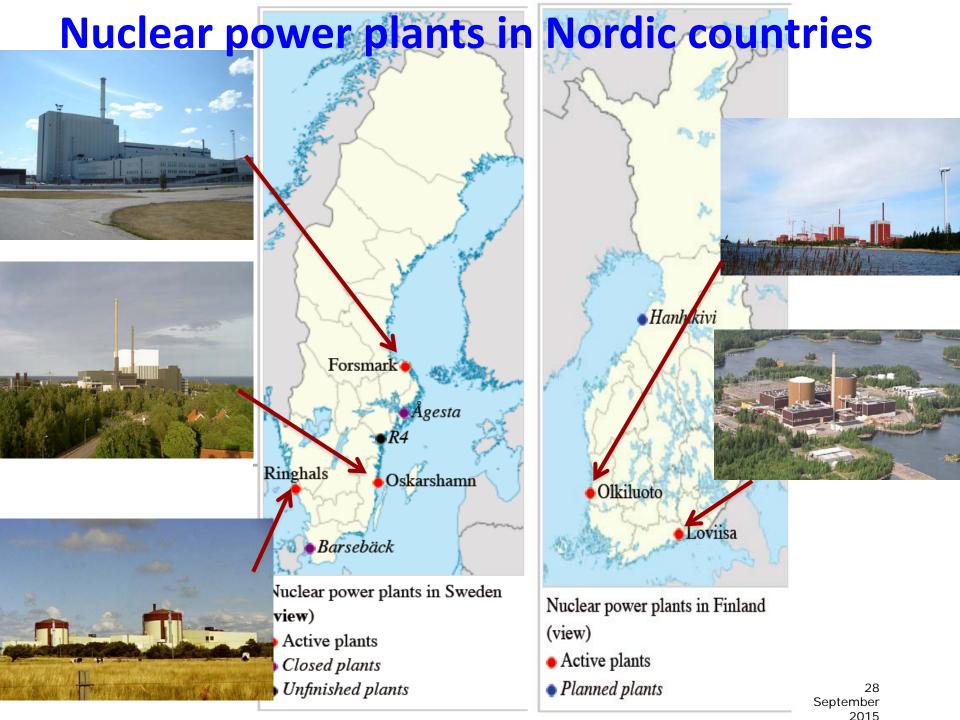

Xiaolin Hou

Technical University of Denmark

Center for Nuclear Technologies (DTU-Nutech), Risø Campus, Roskilde, Denmark

DTU Nutech Center for Nuclear Technologies

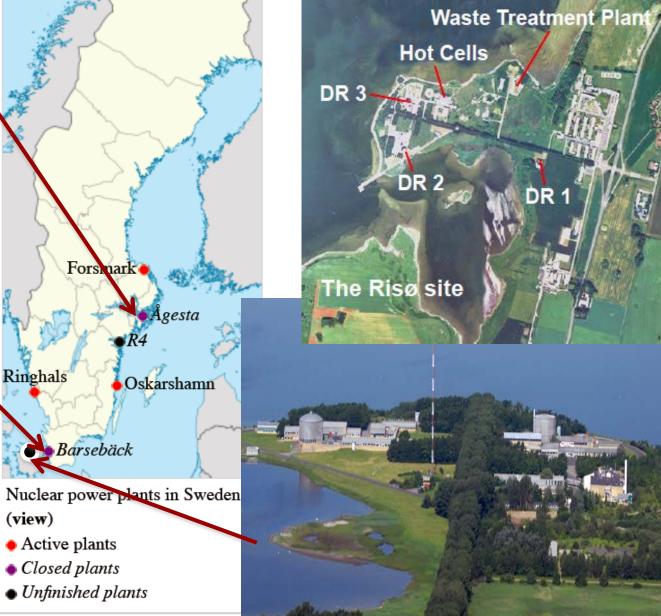

Application of Radionuclides



Becker, 2003

Radionuclides of interest in environmental radioactivity and nuclear industry

- Important artificial radionuclides in the environment [√] ³H, ¹⁴C, ⁹⁰Sr, ¹³⁷Cs, ¹³⁴Cs, ⁹⁹Tc, ¹²⁹I, ^{238,239,240,241}Pu, ²³⁷Np, ²⁴¹Am, etc.
- Important radionuclides in nuclear industry and decommissioning
 - ✓ ³H, ¹⁴C, ⁹⁰Sr, ¹³⁷Cs, ¹³⁴Cs, ⁹⁹Tc, ¹²⁹I, ^{238,239,240,241}Pu, ²³⁷Np, ²⁴¹Am, ²⁴²Cm, ³⁶Cl, ⁴¹Ca, ⁵⁵Fe, ⁵⁹Ni, ⁶³Ni, ⁶⁰Co, ¹³³Ba, ¹³⁵Cs
 ¹⁵²Eu, ⁷⁹Se, ⁹³Zr, ⁹³Mo, ⁹⁴Nb, etc.


EU Recommendations of for reporting discharges from NPP, 2004/2/Euratom

Key nuclear	Required Ld, Bq/m ³		List of radionuclides	
	Air releases	Liquid discharge	Air	Liquid
Kr-85	0.0001		⁴¹ Ar, ⁸⁷ Kr, ⁸⁸ Kr	
Xe-133	0.0001		¹³⁵ Xe, ¹³⁷ Xe	
S-35	0.1	30,000		⁵⁵ Fe, ⁶³ Ni
Sr-90	0.02	1000	⁸⁹ Sr	
Pu-239+Pu-240	0.005	6000	²³⁸ Pu	
241Am	0.005	50	²⁴² Cm, ²⁴³ Cm, ²⁴	⁴ Cm
Total alpha	0.01	1000		
H-3	1000	100,000		
C-14	10			

Decommissioning activities of Nordic nuclear facilities

Methods developed for decommissioning in DTU Nutech

Sample	Nuclides	Measurement	Sample	MDA(Ba/a)
-	Inuclides		Sample	MDA(Bq/g)
type	2	method	amount (g)	
soil,	³ H	LSC] 2 g	0.1 Bq/g
sedime	¹⁴ C	LSC		0.05 Bq/g
nt,	⁵⁵ Fe	LSC	20 grams	0.05 Bq/g
vegetati	⁶³ Ni	LSC		0.01 Bq/g
on,	³⁶ Cl	LSC		0.01 Bq/g
animal	¹²⁹ I	LSC		0.01 Bq/g
tissues	⁴¹ Ca	LSC		0.15 Bq/g
(organi	⁹⁰ Sr	Beta counting		0.01 Bq/g
cs)	⁹⁹ Tc	Beta counter		0.01 Bq/g
		/ICP-MS		
	⁹⁴ Nb	γ-spectrometry		0.5 Bq/g
	²³⁸ Pu	α -spectrometry		0.01 Bq/g
	²³⁹ Pu	α -spectrometry		0.01 Bq/g
		/ICP-MS		
	²⁴⁰ Pu	α -spectrometry	1	0.01 Bq/g
		/ICP-MS		
	²⁴¹ Pu	ICP-MS]	0.3 Bq/g
	²⁴¹ Am	α-spectrometry		0.01 Bq/g
8	²⁴⁴ Cm	α -spectrometry		0.01 Bq/g

Methods developed for decommissioning in DTU Nutech

Sample	Nuclides	Measurement method	Sample	MDA(Bq/g)
type			amount	
			(g)	
Water	³ H	LSC	5 ml	0.05 Bq/ml
	¹⁴ C	LSC	20 ml	0.02 Bq/ml
	⁵⁵ Fe	LSC	100 ml	0.01 Bq/ml
	⁶³ Ni	LSC		0.002 Bq/ml
	³⁶ Cl	LSC		0.002 Bq/ml
	¹²⁹	LSC		0.002 Bq/ml
	⁴¹ Ca LSC			0.02 Bq/ml
	⁹⁰ Sr	Beta counting	1	0.002 Bq/ml
	⁹⁹ Tc	Beta counter /ICP-MS]	0.002 Bq/ml
	⁹⁴ Nb	γ-spectrometry		0.1 Bq/ml
	²³⁸ Pu	α-spectrometry		0.002 Bq/ml
	²³⁹ Pu	α-spectrometry /ICP-		0.002 Bq/ml
		MS		
	²⁴⁰ Pu	α-spectrometry /ICP-		0.002 Bq/ml
		MS		
	²⁴¹ Pu	ICP-MS]	0.07 Bq/ml
	²⁴¹ Am	α-spectrometry]	0.002 Bq/ml
9	²⁴⁴ Cm	a-spectrometry]	0.002 Bg/mel

NKS-B STANDARDMETHOD project 2014 & 2015 Standardization of radioanalytical methods for determination of important radionuclides for environmental assessment and waste management in Nordic nuclear industry

Participants/Partners:

DTU, Denmark :Xiaolin HouForsmark AB, Sweden:Anders Falk/Mattias OlssonOKG, Sweden:Sofie Englund,Ringhals AB, Sweden:Olof GottfridssonStudsvik AB, Sweden:Charlotta AskeljungSTUK,FinlandKaisa VaaramaaLoviisa NPP, Finland:Laura Togneri/ Miia LampenOlkiluoto NPP,Finland:Hannele Hirvonen

NKS STANDMETHOS project

The goals of the project:

- A Nordic network on radioanalysis of waste and environmental samples
- Overview of the present status of radioanalysis in Nordic labs
- Summary of the currently applied radioanalytical methods for some important radionuclides including ⁶³Ni, ⁵⁵Fe, ¹⁴C and ³H in all Nordic labs.
- Optimized methods for routine analysis of waste and environmental samples (e.g. ⁶³Ni in discharges and environmental water)
- Identification of the demands from Nordic industries for new radioanalytical methods.

Overview of the present status of radioanalysis in Nordic labs (1)

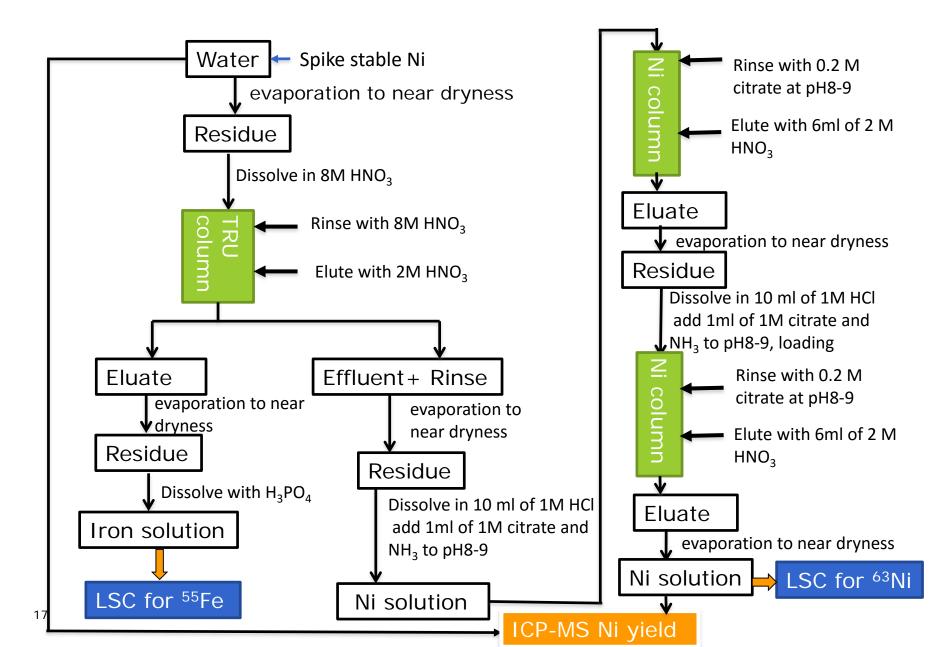
Country	Organization	Purpose of analysis	Main radionuclides
Denmark	Technical	Environmental radioactivity,	³ H, ¹⁴ C, ³⁶ Cl, ⁴¹ Ca, ⁵⁵ Fe, ⁶³ Ni,
	University of	radioecology, environmental	^{89,90} Sr, ⁹⁹ Tc, ¹²⁹ I, ²¹⁰ Po, ²¹⁰ Pb,
	Denmark	trace, characterization of	²²² Rn, ^{226,228} Ra, isotopes of U, Th
		decommissioning waste,	and Pu, ²³⁷ Np, ²⁴¹ Am, ²⁴⁴ Cm,
		emergency preparedness	gross alpha, gross beta
Norway	Institute for	Environmental radioactivity,	³ H, ^{89,90} Sr, ²¹⁰ Po, ²¹⁰ Pb, ²²² Rn,
	Energy	waste management.	^{226,228} Ra, Isotopes of U, Th and Pu,
	Technology (IFE)		²³⁷ Np, ²⁴¹ Am, gross alpha, gross
			beta
	Norwegian	Environmental radioactivity,	^{89,90} Sr, ⁹⁹ Tc ²¹⁰ Po, ²¹⁰ Pb, ²²² Rn,
	University of Life	radioecology, environmental	^{226,228} Ra, Isotopes of U, Th and Pu,
	Sciences	trace,	²³⁷ Np, ²⁴¹ Am
	Norwegian	Environmental radioactivity and	^{89,90} Sr, ⁹⁹ Tc, ¹²¹⁰ Po, ²¹⁰ Pb, ²²² Rn,
	Radiation	radioecology, environmental	^{226,228} Ra, Isotopes of U, Th and Pu,
	Protection	trace, emergency preparedness	²³⁷ Np, ²⁴¹ Am, gross alpha, gross
	Authority (NRPA)		beta

Overview of the present status of radioanalysis in Nordic labs (2)

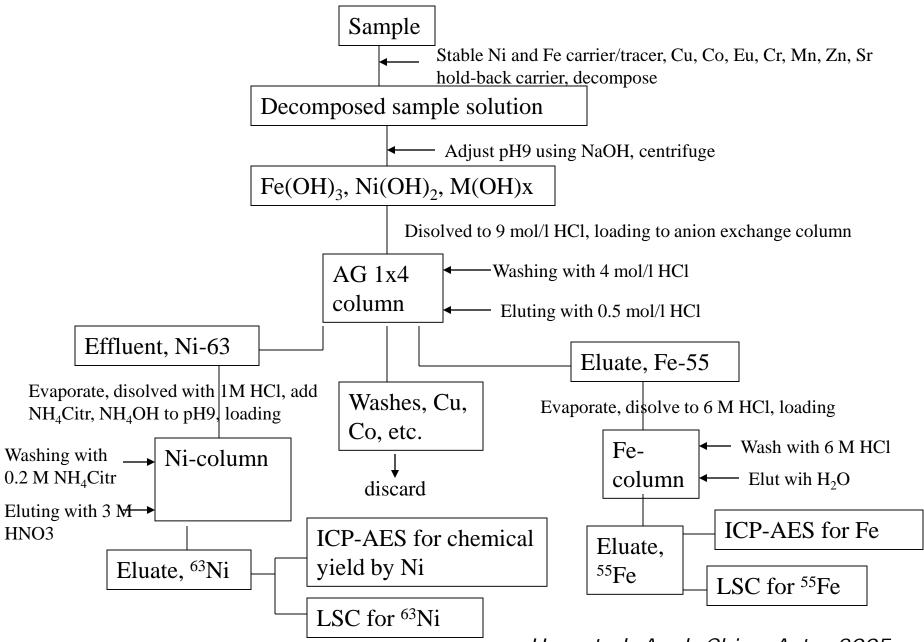
Country	Organization	Purpose of analysis	Main radionuclides
Finland	Nuclear Safety	Environmental radioactivity, bioassay of radioactivity, emergency preparedness	³ H, ¹⁴ C, ^{89,90} Sr, ⁹⁹ Tc, ²¹⁰ Po, ²¹⁰ Pb, ²²² Rn, ^{226,228} Ra, ²³⁴ U, ²³⁵ U, ²³⁸ U, ^{232,230,228} Th, ^{239,240} Pu, 241Am, gross alpha, gross beta
	University of Helsinki	nuclear waste	³ H, ¹⁴ C, ⁴¹ Ca, ^{89,90} Sr, ²¹⁰ Po, ²¹⁰ Pb, ²²² Rn, ^{226,228} Ra, Isotopes of U, Th and Pu, ²³⁷ Np, ²⁴¹ Am, gross alpha, gross beta
	Loviisa NPP	Monitoring of radioactivity in the power plant, discharges and surrounding environment	³ H, ¹⁴ C, ⁶³ Ni, ^{89,90} Sr, gross alpha, gross beta
	Olkiluoto NPP		³ H, ¹⁴ C, ^{89,90} Sr, gross alpha, gross beta

Overview of the present status of radioanalysis in Nordic labs (3)

Country	Organization	Purpose of analysis	Main radionuclides
Sweden	Forsmark NPP	Monitoring of radioactivity in the power plant, discharges and surrounding environment	³ H, ¹⁴ C, ⁶³ Ni, ⁹⁰ Sr, gross alpha, gross beta
	Oskarhamn NPP	Monitoring of radioactivity in the power plant, discharges and surrounding environment	³ H, ¹⁴ C, ⁵⁵ Fe, ⁶³ Ni, ^{89,90} Sr, ²³⁸ Pu, ^{239,240} Pu, ²⁴¹ Am, ²⁴⁴ Cm, ^{243,244} Cm, gross alpha, gross beta
	Ringhals NPP	Monitoring of radioactivity in the power plant, discharges and surrounding environment	³ H, ¹⁴ C, ⁶³ Ni, ^{89,90} Sr, ²³⁸ Pu, ^{239,240} Pu, ²⁴¹ Am, ²⁴⁴ Cm, ^{243,244} Cm, gross alpha, gross beta
	Studsvik Nuclear AB	Waste management, characterization of decommissioning waste, emergency preparedness	³ H, ¹⁴ C, ³⁶ Cl, ⁵⁵ Fe, ⁶³ Ni, ^{89,90} Sr, ⁹⁹ Tc, ¹²⁹ I, ²¹⁰ Po, ^{226,228} Ra, Isotopes of U, Th and Pu, ²³⁷ Np, ²⁴¹ Am, ²⁴² Cm, ²⁴⁴ Cm
	Lund University	Radioecology, environmental trace, emergency preparedness	¹⁴ C, ⁵⁵ Fe, ⁶³ Ni, ^{89,90} Sr, ⁹⁹ Tc, ²³⁸ Pu, ^{239,240} Pu, ²⁴¹ Am, ²⁴⁴ Cm, ^{243,244} Cm, gross alpha, gross beta
	Swedish Defence	emergency preparedness,	³ H, ¹⁴ C, ⁶³ Ni, ^{89,90} Sr, ²³⁸ Pu, ^{239,240} Pu,
	Research Agency	radioecology, nuclear decommissioning	²⁴¹ Am, ²⁴⁴ Cm, ^{243,244} Cm, gross alpha, gross beta
	Swedish Radiation	Environmental radioactivity,	⁹⁰ Sr, ²¹⁰ Po, ²³⁸ Pu, ^{239,240} Pu, gross alpha,
	Safety Authority (SSM)	emergency prepardness	gross beta etc.


Summary of the currently applied radioanalytical methods for ⁶³Ni, ⁵⁵Fe, ³H, ¹⁴C and ⁹⁰Sr in Nordic labs (1)

Nuclide	Sample type	Method	Laboratory
⁶³ Ni	Water	TRU-Ni resin	Forsmark, Oskarhamn and Ringhals NPP , Loviisa NPP
		Preciptiation-ion exchange-Ni resin	DTU Nutech, STUK,
	Concrete, graphite, metals	Preciptiation-ion exchange-Ni resin	DTU Nutech
⁵⁵ Fe	Water	TRU chromatography	Oskarhamn NPP
		Preciptiation-anion exhcange chromatography	DTU Nutech, Loviisa
	Concrete, graphite, metals	Acid digestion/leaching, hydroxide preciptiation, anion exchange chromatography	DTU Nutech
³ Н	Water	Distillation	All labs
	Soil sample (concrete,	Combustion using Packard Oxidizer	DTU Nutech, STUK
	graphite, soil)	Combustion using tube furnance	Studsvik
	Air	3H collector (as tritium water)	Oskarhamn, Ringhals, Forsmark NPP, DTU Nutech


Summary of the currently applied radioanalytical methods for ⁶³Ni, ⁵⁵Fe, ³H, ¹⁴C and ⁹⁰Sr in Nordic labs (2)

Nuclide	Sample type	Method	Laboratory
⁹⁰ Sr	Water	Carbonate precipitation, Ca(OH)2 precipitation, Sr (Ra, Ba, Pb) precipitation, $Y_2(C_2O_4)_3$ precipitation for ⁹⁰ Y	DTU Nutech
		Oxalate precipitation, chromate preciptiation to remove Pb, carbonate precipitation of Sr, extraction chromatography using Sr resin	STUK
	Cation exchange chromatography or phosphate preciptiation + extraction chromatography using Sr resin	Oskarhamn, Ringhals NPP	
		Direct solvent extraction of Y	Forsmark NPP
biolog Concre	Environmental and biological samples, Concrete, graphite, metals	Ashing, acid digestion (HCl, or HNO ₃ +HCl), separation using the same precedure as for water sample	DTU Nutech, STUK,
¹⁴ C	Water	Evaportation follow by combustion	DTU Nutech
	Soil sample (concrete, graphite, soil metals)	Combustion using Packard Oxidizer	DTU Nutech, STUK
		Combustion using tube furnance	Studsvik
	Air	14C collector (Carbosorb?)	Oskarhamn, Ringhals, Forsmark NPP

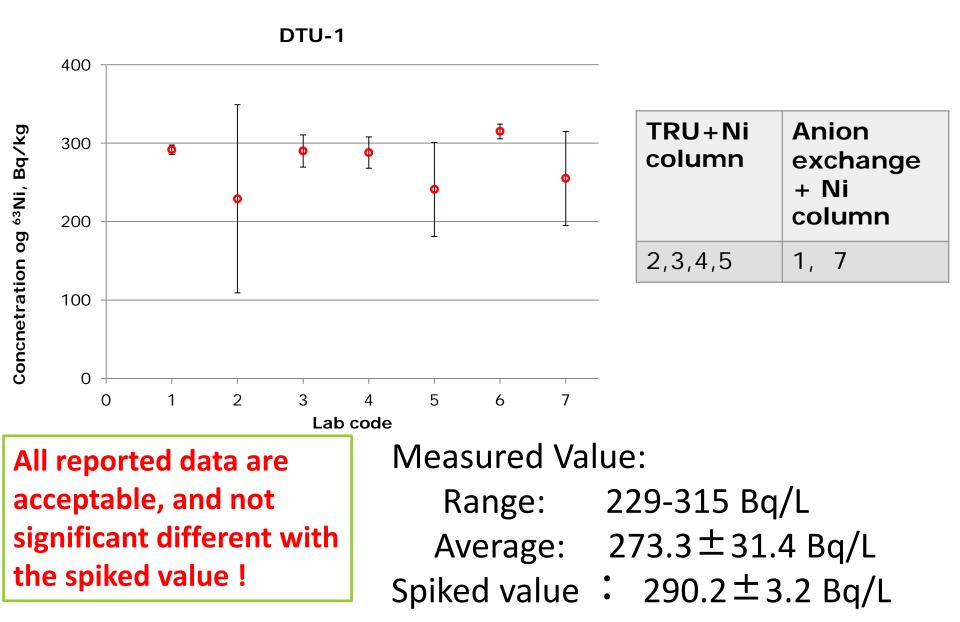
Analytical Procedure for ⁵⁵Fe and ⁶³Ni using by Labs in the Swedish NPPs

DTU procedure for 63Ni and 55Fe

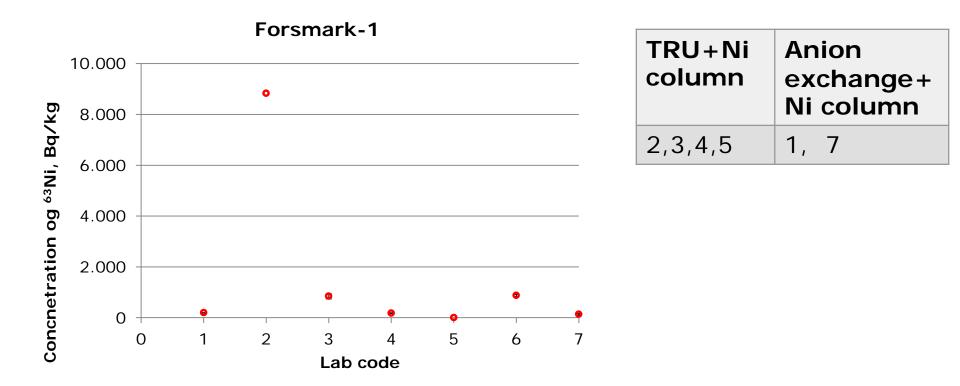
Hou et al. Anal. Chim. Acta, 2005

Three Inter-comparison Samples

Code	Sample	Matrix	Radionuclides
DTU-1	Spiked water	1.0 L in HNO ₃	⁶³ Ni, ⁵⁵ Fe, ⁶⁰ Co, and ¹³⁷ Cs
Forsmark-1	Reactor coolant water collected from Forsmark NPP	1.0 L water in HNO ₃	 ⁶³Ni, ⁵⁵Fe, ³H, ⁵¹Cr, ⁵⁸Co, ⁶⁰Co, ^{110m}Ag, ⁹⁹Mo, ¹²²Sb, ¹⁴⁴Ce;
Forsmark-2	Acid digested filter	5 mL inHNO ₃ and H ₂ SO ₄	⁶³ Ni, ⁵⁵ Fe, ⁵⁴ Mn, ⁵⁸ Co, ⁶⁰ Co, ⁶⁵ Zn.

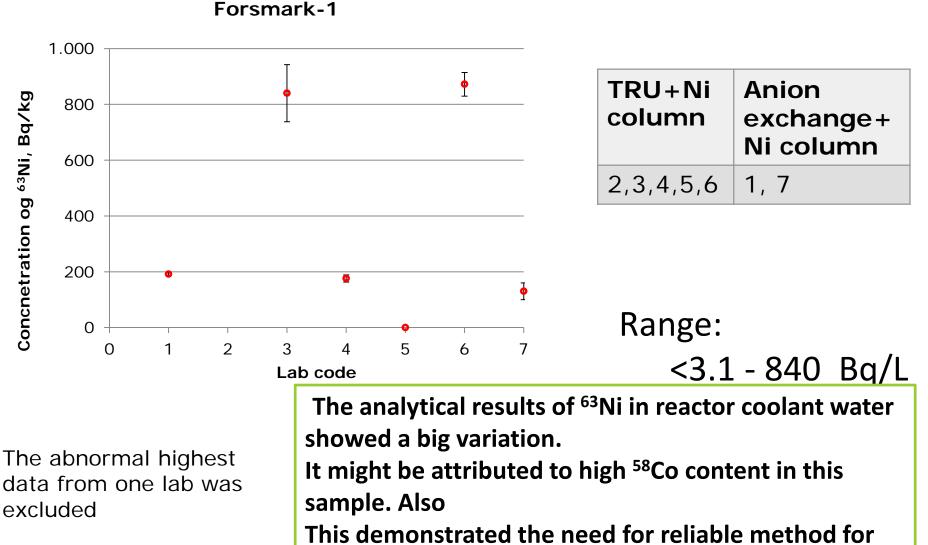

Laboratories participate in comparison and reported results

Institue		63Ni		55Fe
	DTU-1	Forsmark-1	Forsmark-2	
DTU Nutech	Х	Х	Х	Х
Studsvik AB	Х	Х	X	
Forsmark	Х	Х	Х	
OKG	Х	Х	Х	
Ringhals AB	Х	Х	Х	
STUK	Х	Х	Х	
Loviisa	Х	Х		X 28


Methods used for determination of ⁶³Ni and ⁵⁵Fe

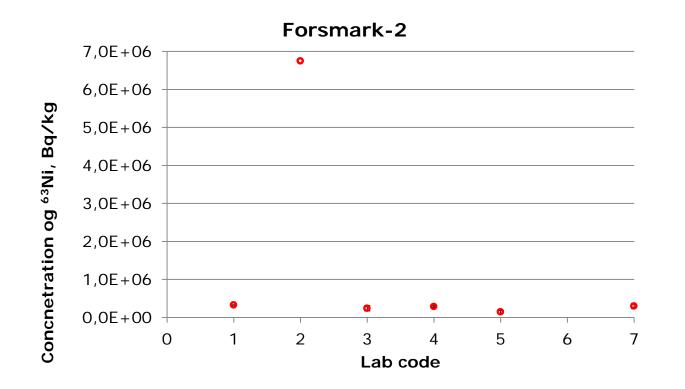
Institue		63Ni		55Fe
	TRU+1 Ni column	TRU+2 Ni Column	Fe(OH) ₃ precipitation +anion excheng+ Ni resin	Fe(OH) ₃ precipitation+ anion excheng
DTU Nutech			Х	Х
Studsvik AB				
Forsmark		х		
OKG		х		
Ringhals AB	Х			
STUK			Х	
Loviisa		х		
21				28 Sontombor

Analytical results of ⁶³Ni in DTU-1 (Spiked water)

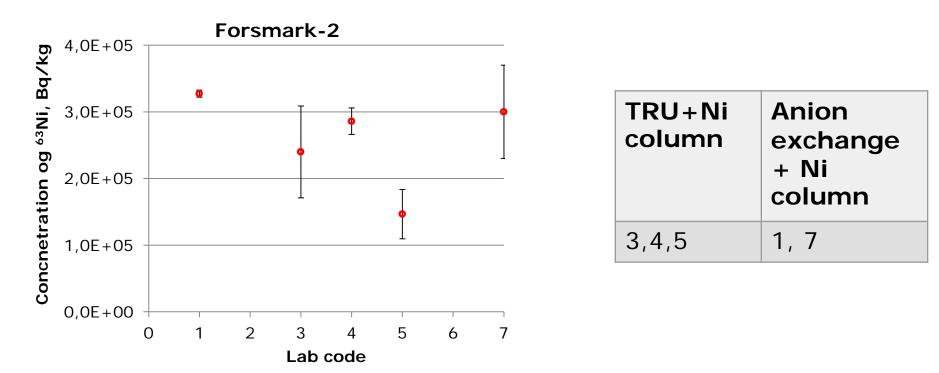


Analytical results of ⁶³Ni in Forsmark-1 (reactor coolant water with high ⁵⁸Co activity)

The method used by Lab 2 is lack of the ability to separate the interfering nuclides from the Ni. It is declared that the results for Forsmark-1 and Forsmark-2 samples is reliable.


Analytical results of ⁶³Ni in Forsmark-1 (reactor coolant water with high ⁵⁸Co activity)

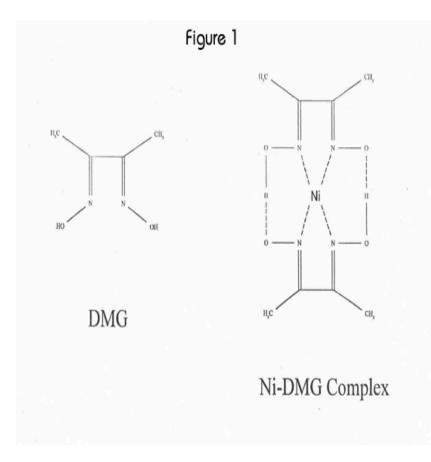
real sample analysis.


24

Analytical results of ⁶³Ni in Forsmark-2 (digested filter)

The method used by Lab 2 is lack of the ability to separate the interfering nuclides from the Ni. It is declared that the results for Forsmark-1 and Forsmark-2 samples is reliable.

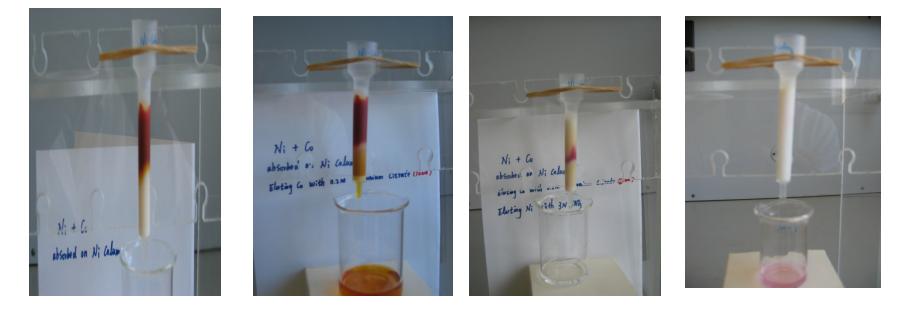
Analytical results of ⁶³Ni in Forsmark-2 (digested filter)


The abnormal data from one lab was excluded

Range: $(1.47-3.27) \times 10^{5}$ Bq/L Average: $(2.60 \pm 0.69) \times 10^{5}$ Bq/L

Analytical results of ⁵⁵Fe in DTU-1 (Spiked water)

Code	55Fe concentration, Bq/kg					
	DTU-1	(Spiked			Fors	smark-2
	sol	ution)	Forsmark-	-1 (coolant)	(digest	ed filter)
		Uncertainty		Uncertainty		Uncertaint
	Value	(k=1)	Value	(k=1)	Value	y (k=1)
1	3.11E+02	1.05E+01	7.33E+00	1. 40E+00	1.26E+05	3.81E+03
6	3. 27E+02	4. 57E+01				
3						
4						
5						
7						
Spiked						
vaue	3.13E+02	6. 26E+00				


Application of Ni-DMG for separation of Ni

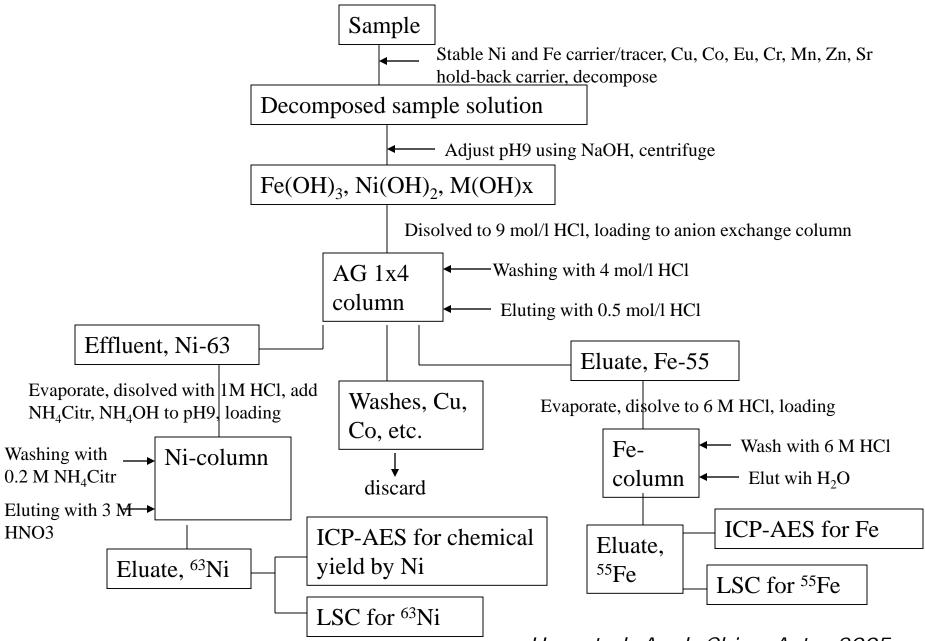
- Ni can form a stable specific complex with dimethylglyoxime. By Ni-DMG precipitation or organic solvent extraction of Ni-DMG complex at low concentration, Ni can be separated from many other elements.
- While, some other metals, such as Co, Cu can also form a complex with DMG and interferring the separation of Ni.

Application of extraction chromatography for Ni separation and ⁶³Ni measurement

The Nickel Resin contains the DMG inside the pores of a polymethacrylate resin. The nickel-DMG precipitate occurs on the resin, where it is held and readily separated from other elements in the supernatant.

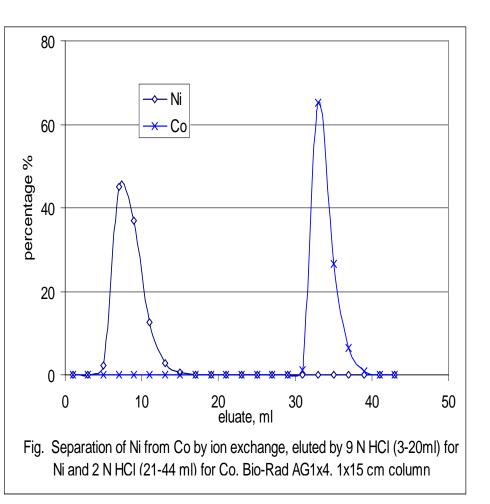


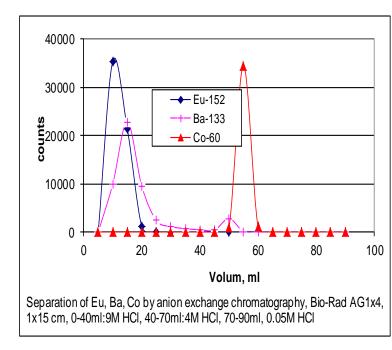
1. Loading of solution


2. Washing with 0.2 M ammonium citrate to remove other elements

3. Eluting Ni using HNO3 4. Evaporte eluted Ni-DMG solution to 0.1-0.2 ml for LSC

Analytical Procedure for ⁵⁵Fe and ⁶³Ni using by Labs in the Swedish NPPs




DTU analytical procedure for ⁶³Ni and ⁵⁵Fe

Hou et al. Anal. Chim. Acta, 2005

Separation of Ni from Co, Eu, Ba using ion exchange chromatography

NKS STANDMETHOD 2015 Porject meeting

- 26th March 2015, Copenhagen, Denmark
- Participants/Partners:

DTU, Denmark : Xiaolin Hou
Forsmark AB, Sweden: Anders Falk/Mattias Olsson
OKG, Sweden: Sofie Englund,
Ringhals AB, Sweden: Olof Gottfridsson
Studsvik AB, Sweden: Charlotta Askeljung
Loviisa NPP, Finland: Laura Togneri/ Miia Lampen
Olkiluoto NPP,Finland: Hannele Hirvonen

NKS STANDMETHOS project 2015

The goals of the project:

- (1) A Nordic standard method for accurate determination of ⁶³Ni in water samples (especially for water samples from nuclear power plant)
- (2) A recommended method for simultaneous determination of ⁵⁵Fe and ⁶³Ni in water samples.
- (3) A proposed chemical procedure for the simultaneous determination of several radionuclides (⁸⁹Sr/⁹⁰Sr, ⁵⁵Fe, ⁶³Ni, uranium, plutonium, curium and americium) in waste and environmental samples.

Inter-comparison Samples 2015

Code	Sample	Matrix	Radionuclides
DTU-1	Spiked water	1.0 L in HNO ₃	⁶³ Ni, ⁵⁵ Fe, ⁶⁰ Co, and ¹³⁷ Cs
Forsmark-1	Reactor coolant water collected from Forsmark NPP	1.0 L water in HNO ₃	 ⁶³Ni, ⁵⁵Fe, ³H, ⁵¹Cr, ⁵⁸Co, ⁶⁰Co, ^{110m}Ag, ⁹⁹Mo, ¹²²Sb, ¹⁴⁴Ce;

Conclusion and perspectives

- It is useful and important for the collaboration among Nordic research labs and the industry in radiochemcial analysis in view of improvement of the radioanalytical capacity and quality in Nordic industry
- Inter-comparison exercise in radiochemcial analysis of radionuclides in environmental and waste is a good way for evaluation of the analytical results, especially those radionculides without suitable standard reference materials
- Establishment of standard/reference method for determination of important radionculides in the Nordic industry is needed for improvement and insurance of analytical quality.
- Besides ⁶³Ni and ⁵⁵Fe, standard/reference methods for determination of other important radionuclides are expected in near future, which will improve the radioanalytical capacity and ³⁶competitive in Nordic countries.

Acknowledgements

NKS for financial support of the STANDMETHOD project

 All staffs RAS group in DTU Nutech for support and participating in the radiochemical analysis.

All partners of NKS-B STANDMETHOD project Forsmark AB, Sweden: Anders Falk/Mattias Olsson OKG, Sweden: Sofie Englund, Ringhals AB, Sweden: Olof Gottfridsson Studsvik AB, Sweden: Charlotta Askeljung STUK, Finland Kaisa Vaaramaa Loviisa NPP, Finland: Laura Togneri/ Miia Lampen Olkiluoto NPP, Finland: Hannele Hirvonen