EUROPEAN SPALLATION SOURCE

ESS status - focusing on the perspectives for international research, and the challenges related to radiation protection for the staff, the public and the environment

> Peter Jacobsson Head of Environment, Safety & Health

> > www.europeanspallationsource.se 15-09-28

Spallation

EUROPEAN SPALLATION SOURCE

Spallation: A nuclear process in which a high energy proton excites a neutron rich nucleus which decays sending out neutrons (and other particles such as protons, muons, pions, neutrionos)

Complementarity between X-rays and Neutrons

→ X-rays see high-Z atoms. Neutrons interact with nuclei. → Neutrons see low-Z atoms. X rays (left) and Neutrons (right)

T. Kamiyama, et al.

EUROPEAN

SPALLATION SOURCE

Neutron facilities – reactors and particle driven

ESS on the map

The ESS Project

- 22 "public" instruments (16 included in the construction budget)
- 5 MW accelerator capability
- One target station with tungsten (W) as target material
- Organization form: ERIC (European Research Infrastructure Consortium)
- Cost Book construction cost of 1,843 B€₂₀₁₃
- Cost Book annual operations cost target of 140 M€₂₀₁₃
- "Neutrons in this decade"

EUROPEAN SPALLATION SOURCE

The ESS Facility Layout

Financing includes cash and deliverables

EUROPEAN SPALLATION SOURCE

Host Countries of Sweden and Denmark

47,5% Construction 15% Operations In-kind Deliverables ~3% Cash Investment ~97%

Non Host Member Countries

52,5% Construction 85% Operations In-kind Deliverables ~ 70% Cash Investment ~ 30%

Ground Break and Foundation Stone Celebrations

Ground Break Event

- 2 September 2014 (200 guests)
- Hosted by Danish Minister for Science and Higher Education and Swedish Minister of Education and Research
- Recognized progress with member country commitments
- Official start of the construction!

Foundation Stone Ceremony

- 9 October 2014 (700 guests)
- Programme on site including speeches, partner video, walking tour and reception
- Science Symposium in Lund
- Mobilized partners and stakeholders for construction!

Responsible – Renewable – Recyclable

Accelerator

- Superconducting Proton Linear Accelerator (500 m)
- 2.0 GeV Proton Energy
- 2.86 ms pulse length
- 14 Hz pulse frequency
- 71.4 ms periods between pulses
- 5MW proton beam power

Target

- Target Material; Tungsten (W)
- Rotating wheel, He cooled
- Pre-Moderator; H₂O
- Moderator; H₂(I)
- Reflector; Be
- Proton Beam Window;
 Al

Target

Instruments

- 22 instruments planned in the project
- 44 beam ports
- Three instrument halls in the project Possibilities to build "long" instruments

Legal Aspects and Permits

- Environmental Code
 - Permissibility for construction & operation
- Radiation Safety Protection Act
 - Permit for Construction (step 1)
 - Permit for Installation (step 2)
 - Permit for Commissioning (step 3)
 - Permits given for different levels of beam power and production of neutrons.

FUROPFAN

- Permit for permanent operation (step 4)
- Permit for Decommissioning (step 5)
- Planning & Building Act
 - Detailed Plan
 - Building Permit
 - Permits to be given as a graded approach
- The Act on Flammable Materials and Explosives
 - Agreement with the Local Fire Brigade
- National Heritage Act
 - Archeological investigation

Graded approach SSM - Schedule

- General Hearing at the Regional Environmental Court 2014-04-24—25. Decision, with permit and conditions received 2014-06-12.
- Permit #1 from the Swedish Radiation Safety Authority (SSM) received 2014-07-17. Over 300 conditions to be applied.
- Notification process in accordance with the Euroatom Treaty, article 37 finalised 2015-02-26. The European Commission concluded that the ESS facility does not constitute any threat or hazard to any nearby state.

Nuclide Inventory – Airborne emissions Normal operation

EUROPEAN

SPALLATION SOURCE

Accelerator

Nuclide	Chemical form	Source Term (Bq/y)
H-3	H₂O gas	8.8×10^{6}
Be-7	BeO ₂ aerosol	1.0×10^{7}
C-11	CO, CO_2 gas	2.6×10^{12}
N-13	NO_2 gas	2.7×10^{12}
O-15	O_2 gas	1.5 x 10 ¹²
Ar-41	Ar gas	4.1×10^{10}

Target Station

Nuclide	Chemical form	Activity (Bq)	Release fraction	Source term
H-3	H_2O gas	5 x10 ¹⁴	1 x 10 ⁻²	5 x 10 ¹² Bq/y
I-125	HI, HIO ₃	1×10^{8}	1 x 10 ⁻²	1 x 10 ⁶ Bq/y
H-3	Gas	5 x 10 ¹⁴	1 x 10 ⁻³	5 x 10 ¹¹ Bq/5y
W-181	Dust/aerosol	1 x 10 ¹⁶	4 x 10 ⁻⁸	4 x 10 ⁸ Bq/5y
Ta-179	Dust/aerosol	8 x 10 ¹⁵	4 x 10⁻ ⁸	3 x 10 ⁸ Bq/5y
Gd-148	Dust/aerosol	8 x 10 ¹¹	4 x 10 ⁻⁸	3 x 10 ⁴ Bq/5y

- ECOSYS-87 model (DTU/Andersson, Nielsen)
- Pathways
 - Intake (via inhalation, ingestion and skin absorption) of tritiated water vapour in the air
 - Inhalation of contaminant particles (during plume passage and from re-suspension)
 - External exposure from the contaminated plume during its passage
 - External exposure from deposition of airborne contaminants on surfaces
 - External exposure following deposition of airborne contaminants on humans
 - Ingestion of locally produced contaminated food products

Dose contribution – Airborne emissions (2)

Nuclide	Release (Bq)	Dose 1 year-child (µSv)	Dose Adult (µSv)
W-181	4.0 x 10 ⁸	0.06	0.01
Ta-179	3.0×10^8	0.02	0.001
Gd-148	3.0 x 10⁴	0.003	0.002
Lu-172	5.0 x 10 ⁶	0.003	0.0006
W-185	2.0 x 10 ⁷	0.002	0.0003
Hf-172	5.0 x 10 ⁶	0.002	0.0008
Lu-173	8.0 x 10 ⁶	0.002	0.0004
Ta-182	3.0 x 10 ⁶	0.001	0.0002
Hf-175	2.0 x 10 ⁶	0.0002	0.00003
TOTAL		0.1	0.02

Nuclide Inventory Target (after 5 years of operation) larger than 1×10^{15} Bq

Nuclide	T _{1/2} (s)	Bq
W-177	8.10 x 10 ³	2.01 x 10 ¹⁵
Ta-183	4.41 x 10 ⁵	1.98 x 10 ¹⁵
W-179	3.84 x 10 ²	1.94 x 10 ¹⁵
Hf-173	8.64×10^4	1.88 x 10 ¹⁵
W-176	8.30 x 10 ³	1.60 x 10 ¹⁵
Ta-174	4.25 x 10 ³	1.55 x 10 ¹⁵
Ta-180	2.94×10^{4}	1.54 x 10 ¹⁵
Yb-169	2.77×10^{6}	1.47 x 10 ¹⁵
Ta-182	9.89 x 10 ⁶	1.45 x 10 ¹⁵
Ta-173	1.13×10^{4}	1.37 x 10 ¹⁵
Lu-171	7.12 x 10⁵	1.34 x 10 ¹⁵
Hf-179	1.87×10^{1}	1.32 x 10 ¹⁵
Hf-171	4.36×10^4	1.16 x 10 ¹⁵
Lu-173	4.32 x 10 ⁷	1.14 x 10 ¹⁵
Lu-170	1.73 x 10 ⁵	1.11 x 10 ¹⁵
Ta-182	2.83×10^{1}	1.07 x 10 ¹⁵

EUROPEAN

SPALLATION SOURCE

Defining the target material

ESS SO

- Tritium & Noble gases H, He, Ar, Kr, Xe
- Aerosols Na, K, Zn, Ga, Se, Rb, Cd, In, Sn, Te, Cs
- Volatiles N, O, F, P, S, Cl, I, Br
- Other All the other elements
- Tritium & Noble gases 100%
- Aerosols 0.5%
- Volatiles 0.2%
- Other 0.001%

- Committed effective dose from inhalation during plume passage
- Effective dose from external exposure from the plume during plume passage (1 h)
- Effective external dose from ground deposited nuclides for time integrals 0-30 days, 0-70 years and until infinity.
- Committed effective dose from internal exposure from intake of locally produced food the first year and integrated dose from a 70-year period and until infinity.

Dose caculations

Parameter	Value	Reference			
Duration of release	3600 s	SSM, Reference [67]			
Transportation time within the	300 s	ESS, Reference [27]			
building					
Wind Speed	3 m/s	SSM, Reference [67]			
Inversion	150 m	SSM, Reference [67]	Parameter	Value	Reference
Initial dispersion (horizontal and	20 m	Default in Lena-code [68]	Dry soil density	260 kg/m ²	IAEA, reference [69]
vertical)			Transfer factors for terrestrial food	Element specific	IAEA, reference [69] & Oak
Surface roughness	0.1 m	SSM, Reference [67]	crops		Ridge National Laboratory
Dispersion parameters	See equations	SSM, Reference [67 and 68]			reference [70]
Relative concentration (300 m from	3 x 10 ⁻⁵ s/m ³	Stability Class D, Reference	Dose coefficient inhalation	Element specific	ICRP, reference [30].
Release point)	,	[67]	Dose coefficient ingestion	Element specific	ICRP reference [30].
Relative concentration (40 000 m	$5 \times 10^{-7} \text{ s/m}^3$	Stability Class D. Reference	Dose coefficient external cloud	Element specific	Laboratory reference [29]
from Release point)	0 × 10 ° 0/	[67]	Dose coefficient, activity on infinite	Element specific	Oak Ridge National
Meandering factor	0.03	Default in Lena-code [68]	planar surface		Laboratory reference [29]
Time integrated deposition velocities:	0.05	SSM Reference [67]	Inhalation rate adult	2.6 x 10 ⁻⁴ m ³ /s	Vattenfall, reference [71]
Noble gases	0 m/s		Inhalation rate infant (1-y child)	6.1 x 10° m°/s	Vattenfall, reference [71]
Particles	0.002 m/s		Root uptake	Element specific	Ridge National Laboratory
Organic Jodino	0.002 m/s				reference [70]
Inorganic Iodine	0.02 m/s		Lumped translocation (surface	0.01 m ² /kg	Studsvik, Reference [72]
	0.0002 m/s	CCM Deference [67]	deposition to edible part of the		
Dry deposition velocities	0	SSM, Reference [67]	crop)	1001	
Noble gases	0 m/s		Consumption of food from crops	100 kg	Reference group, section 3.4
Particles	0.001 m/s		and consumption	0.5 years	SSM, Reference [67]
Organic Iodine	0.01 m/s		Time of exposure from around	30 days to 70 years	SSM, Reference [67]
Inorganic Iodine	0.0001 m/s		contamination	and infinity	

Doses to the Reference Group – 300 m from the release point 1(4)

EUROPEAN SPALLATION SOURCE

	Nuclide	Release (Bq)	Integrated air conc. (Bq s/m³)	Dose (Sv) 1-year	Dose (Sv) Adult
2	H-3	3.2 × 10 ¹⁵	9.6 × 10 ¹⁰	1.2 × 10 ⁻³	4.4 × 10 ⁻⁴
	Cd-109	1.5×10^{11}	4.6 × 10 ⁶	4.3 × 10 ⁻⁵	9.5 × 10⁻ ⁶
	In-115	1.2 × 10 ⁹	3.3 × 10⁴	6.6 × 10⁻ ⁶	3.3 × 10⁻ ⁶
	Sn-113	2.2 × 10 ¹¹	6.6 × 10 ⁶	1.7 × 10⁻⁵	4.6 × 10 ⁻⁶
\rightarrow	I-125	8.4 × 10 ¹¹	2.5 × 10 ⁷	3.4 × 10 ⁻⁴	9.1 × 10 ⁻⁵
	I-126	2.1 × 10 ¹⁰	6.2 × 10⁵	3.0 × 10 ⁻⁵	1.6 × 10 ⁻⁶
	Hf-172	7.3 × 10 ⁹	2.2 × 10⁵	7.3 × 10 ⁻⁶	1.8 × 10 ⁻⁶
	Ta-180	1.5×10^{10}	4.4 × 10⁵	7.3 × 10 ⁻⁶	2.9 × 10 ⁻⁶
	Ta-182	1.4×10^{10}	4.3 × 10⁵	3.8 × 10 ⁻⁶	1.1 × 10 ⁻⁶
	W-187	1.6 × 10 ¹²	4.6 × 10 ⁷	1.8 × 10 ⁻⁵	2.3 × 10 ⁻⁶
	Re-186	2.0×10^{11}	5.8 × 10 ⁶	8.5 × 10 ⁻⁶	1.6 × 10 ⁻⁶
	ΤΟΤΑΙ			1.6×10^{-3}	5.8 $\times 10^{-4}$

Nuclide	Release	Integrated air	Dose (Sv)
	(Bq)	conc. (Bq s/m³)	
Ar-41	7.7 × 10 ¹¹	1.9×10^{7}	1.1 × 10 ⁻⁶
Kr-76	5.3 × 10 ¹²	1.5 × 10 ⁸	2.9 × 10 ⁻⁶
Kr-77	1.0 × 10 ¹³	2.2 × 10 ⁸	9.8 × 10 ⁻⁶
Kr-79	1.9 × 10 ¹³	5.5 × 10 ⁸	6.1 × 10 ⁻⁶
Kr-87	1.8 × 10 ¹²	3.9 × 10 ⁷	1.6 × 10 ⁻⁶
Kr-88	9.5 × 10 ¹¹	2.5 × 10 ⁷	2.4 × 10 ⁻⁶
Xe-120	1.2×10^{14}	2.0 × 10 ⁹	3.6 × 10 ⁻⁵
Xe-121	1.3 × 10 ¹⁴	2.1 × 10 ⁹	1.8 × 10 ⁻⁴
Xe-122	1.6×10^{14}	4.6 × 10 ⁹	1.0 × 10 ⁻⁵
Xe-123	1.4 × 10 ¹⁴	4.2 × 10 ⁹	1.0 × 10 ⁻⁴
Xe-125	1.9 × 10 ¹⁴	5.5 × 10 ⁹	6.0 × 10 ⁻⁵
Xe-127	1.4×10^{14}	4.2 × 10 ⁹	4.7 × 10 ⁻⁵
TOTAL			4.7 × 10 ⁻⁴

Inhalation

Plume exposure

Doses to the Reference Group – 300 m from the release point 2(4)

ess

EUROPEAN SPALLATION SOURCE

<u>Ground</u> <u>exposure</u>

Doses to the Reference Group – 300 m from the release point 3 (4)

EUROPEAN SPALLATION SOURCE

Food uptake

Nuclide	Release (Bq)	Int. surface conc. Dry dep. (Bq s/m ³)	Int. surface conc. Wet dep. (Bq s/m³)	Dose Transl., 1 st year (Sv)	Dose, Root uptake, 1 st year (Sv)	Dose, Root uptake, Infinity (Sv)
Cl-36	8.5 [×] 10 ⁴	3.6 [×] 10 ¹⁰	5.4 [×] 10 ¹¹	< 1 [×] 10 ⁻⁹	< 1 [×] 10 ⁻⁹	5.9 [×] 10 ⁻⁵
Zn-65	9.0 [×] 10 ⁹	8.2 [×] 10 ⁹	1.2 × 10 ¹¹	1.0 × 10 ⁻⁶	1.0 [×] 10 ⁻⁶	2.0 [×] 10 ⁻⁶
Cd-109	1.5×10^{11}	2.6 [×] 10 ¹¹	3.9 [×] 10 ¹²	1.4 × 10 ⁻⁵	2.8 [×] 10 ⁻⁶	7.9 [×] 10 ⁻⁶
Sn-113	2.2 × 10 ¹¹	9.4 [×] 10 ¹⁰	1.4 × 10 ¹²	3.2 [×] 10⁻ ⁶	3.8 [×] 10 ⁻⁷	5.7 [×] 10 ⁻⁷
I-125	8.4 × 10 ¹¹	1.9 × 10 ¹²	2.8 × 10 ¹²	9.3 [×] 10⁻⁴	7.4 [×] 10 ⁻⁶	9.2 [×] 10 ⁻⁶
TOTAL	_			1.0 × 10 ⁻³	1.2 × 10 ⁻⁵	8.3 × 10 ⁻⁵

Doses to the Reference Group – 300 m from the release point 4 (4)

Pathway	Dose (Sv) 1-year old	Dose (Sv) Adult
Inhalation	1.6 [×] 10 ⁻³	5.8 [×] 10 ⁻⁴
External exposure from the plume	4.7 [×] 10 ⁻⁴	4.7 [×] 10 ⁻⁴
External exposure from ground*	2.8 [×] 10 ⁻⁴	2.8 [×] 10 ⁻⁴
Ingestion/root uptake*	1.2 × 10 ⁻⁴	8.3 [×] 10 ⁻⁵
TOTAL	2.5 [×] 10 ⁻³	1.4 × 10 ⁻³
Ingestion/translocation, 1 st year	3.6 [×] 10 ⁻³	1.0 × 10 ⁻³

NI (Bq) Target Station

ltem	Shut down	1 hour	1 year	10 year	100 year
Target wheel	4.9E+17	3.9E+17	1.2E+16	2.0E+15	1.8E+13
Stainless steel shroud of target wheel	1.9E+16	1.6E+16	2.4E+15	2.9E+14	1.3E+13
Target cooling loop (Helium gas)	6.2E+10	6.2E+10	5.8E+10	3.5E+10	2.2E+08
Pre-moderator (water)	1.3E+14	1.9E+13	1.4E+13	8.3E+12	5.5E+10
Pre-moderator shroud	8.8E+13	8.0E+12	5.9E+12	3.5E+12	2.5E+10
Pre-moderator cooling loop (water)	2.5E+13	2.2E+12	1.6E+12	9.8E+11	6.9E+09
Aluminium cladding of the moderator	8.0E+15	2.6E+14	7.7E+12	2.4E+12	1.6E+10
Moderator (H_2 -liq.)	1.6E+11	1.6E+11	1.5E+11	8.9E+10	5.6E+08
Reflector of Beryllium	1.6E+17	5.6E+15	4.7E+15	2.8E+15	1.8E+13
Stainless steel shroud of Be-reflector	1.7E+16	1.5E+16	8.6E+15	7.9E+14	6.2E+11
Total activity in TMRA	6.9E+17	4.3E+17	2.8E+16	5.9E+15	4.9E+13

- Behavior of the Tungsten material during normal operation and incidents, no cladding and Helium cooling
 - Release fractions
 - Chemical behavior in the W material
- Nuclides from the target material that have to be examined
 - Dose coefficients
 - Chemical behavior
- Nuclides in samples
 - Radiation safety reviewing of proposed experiments

ESS looking towards MAX IV

ESS Entrance

Progress on civil construction

