Further education in radiological emergency preparedness for medical physicists in Sweden

Mats Isaksson & Christopher L Rääf
Dep of radiation physics
University of Gothenburg
Medical radiation physics, Malmö
Lund University

Alarm routes for nuclear or radiological accident in Sweden

- Kärnkraftverk
- Kärnteknisk anläggning
- SOS Alarm
- Tjänstgörande strålskyddsinspektör TIB
- Statens strålskyddsinstitut
- Nationell strålskyddsberedskap

- Annan nuklear eller radiologisk nödsituation
- Kärnkraftlän och SKI
- Tjänstgörande meddelande
- Statens strålskyddsinstitut
- Nationell strålskyddsberedskap

* Vid kärnteknisk olycka

Other nuclear or radiological emergency situation

- nuclear weapons fallout from explosions abroad
- "terrorism" – radiological dispersion devices, deliberate contamination, hidden source,…
- transport accidents
- industrial accidents – fire etc.; include also hospitals and universities
- satellites – powered by nuclear reactor or radioactive source

Is it known in advance that radioactive materials is present at the emergency site?

- nuclear weapons fallout from explosions abroad
- "terrorism" – radiological dispersion devices, deliberate contamination, hidden source,…
- transport accidents
- industrial accidents – fire etc.; include also hospitals and universities
- satellites – powered by nuclear reactor or radioactive source

First responders (1)

- The rescue team may perform measurements with intensimeter SRV2000 if something indicates the presence of radioactive material at the site (eg. transport accident)
- If no indication exists it is unlikely that any measurements will be made by the first responders (some indications are given in "Åtgärdskalendern")
First responders (2)

- To get telephone support from radiation protection experts the first responders should contact SSI (according to the plans)
- It is likely that also a medical physicist will be contacted by the local or regional emergency central
- The medical physicist is expected to primarily perform contamination measurements at the emergency ward

The National Board of Health and Welfare: competence descriptions for medical physicists

- The medical physicist should be able to
 - participate as consultative expert of radiological emergency preparedness in case of accidents (transport accidents, nuclear energy accidents etc.)
 - participate in hospital preparedness for large accidents performing measurements and decontamination of patients, dose estimations and risk estimations
 - perform the functions as expert and advisor in radiation and measurements in case of minor accidents and incidents with radiation

Prerequisites for the task

- Medical physicists are radiation experts in a general sense
- Several have practical experience of contamination measurements in a hospital environment
- The tasks are specified in the emergency plan of the hospital
- The education contains very little about radiation protection and measurement techniques in emergency situations outside the hospital
- Several have no experience of practical measurements in radiation protection
- The tasks are not specified in the emergency plan of the hospital

Enhanced national preparedness for radiological and nuclear emergency situations

- A collection of courses within the CPD-programme of Svenska Sjukhusfysikerförbundet (Continuous Professional Development)
- Planned by the Dep of radiation physics at the university of Gothenburg and Medical radiation physics, Malmö at Lund university
- Supported by SSI (emergency preparedness funds)
- The courses may be given as part of PhD-courses
- The courses may be given as regular university courses
 - Starting with one course in Gothenburg autumn 2008

Preparedness and radiation protection in radiological and nuclear emergency situations (1)

- Aims
 - familiarity with threatening pictures
 - knowledge of measures at irradiation and at dispersion of radioactive substances, and decontamination
 - familiarity with the organisation of the national radiation emergency preparedness
 - knowledge of risks and risk communication
 - familiarity with the actors within the emergency preparedness and how they cooperate
 - proficiency in using handheld instruments
 - familiarity with personal dosimetry in these situations

Preparedness and radiation protection in radiological and nuclear emergency situations (2)

- Preparations
 - Presentation of an accident; a discussion of threatening pictures will be partly based on these presentations
- Examination task
 - Description of the organisation at the participant’s hospital; how should the activities be organised regarding reception of injured, instrumentation available, decontamination, cooperation etc.
Preparedness and radiation protection in radiological and nuclear emergency situations (3)

- The course was given in Halmstad
 - 2006 (29 participants, of which 14 med. phys.)
 - 2007 (16 participants, of which 12 med. phys.)
- A new course is planned for autumn 2008

Detectors and measuring methods in radiation protection and preparedness (1)

- Aims
 - familiarity with applicability and signal response for some common instruments; quality measures
 - knowledge of how to handle uncertainties and of factors affecting the signal-to-background variation
 - proficiency in using some important handheld instruments
 - familiarity with methods to analyse radiometric data (e.g., spectrum analysis)

Detectors and measuring methods in radiation protection and preparedness (2)

- Preparations
 - List the available instruments at the hospital and investigate the quality assurance for these
- Examination task
 - Choice from four tasks

Detectors and measuring methods in radiation protection and preparedness (3)

- The course was given in April/May 2008
 - Part 1 in Halmstad (39 participants, of which 21 med. phys.)
 - Part 2 at Barsebäck & Revinge (12 participants, of which 11 med. phys.)
- New course is planned for 2009

"Radiation protection and disaster medicine" (1)

- Aims
 - Introduction to the organisation at hospitals and other authorities
 - Introduction to medical actions at an accident site
 - Knowledge of the role of the medical physicist in relation to other personnel in emergency situations
 - Knowledge of tools for diagnosis, treatment and follow-up of internally contaminated and possibly radiation injured patients
 - Knowledge of retrospective dosimetric methods and tools for internal dosimetry calculations

"Radiation protection and disaster medicine" (2)

- The course will be given in Linköping in September 2008
- Developed in cooperation with the Department of Radiation Physics, Linköping
- Will be carried out in cooperation with Centre for Teaching & Research in Disaster Medicine and Traumatology (KMC)
What I ideally would be presenting at the next NSFS-meeting

• All medical physicists in Sweden have participated in the course *Preparedness and radiation protection in radiological and nuclear emergency situations*
• Contents from the three courses presented here are included in the medical physicist programme at the universities
• One or two additional CPD-courses are given
• All Swedish hospitals have specified the role of the medical physicist in their emergency plans

Thank you!