Introducing the concept of the isodose for optimization of decontamination activities based on typical Northern European houses

Y. Hinrichsen¹,², R. Finck², J. Martinsson², C. Rääf², K. G. Andersson¹

¹Technical University of Denmark, Center for Nuclear Technologies, Denmark
²Lund University, Department of Translational Medicine, Medical Radiation Physics, Sweden
Outline

• Introduction to the concept of the isodose

• Influences of
 - building materials
 - resident behaviour
 - vertical migration
 - variability in contamination

• Comparison to normal decontamination
Definition of the isodose

The isodose $ID_{i,k}$ is defined by the outer boundary of one or more zones in space that contribute for the most part to a given fraction k to the dose at the observation point i. For $\rho_{D,i}(\vec{r})$ being a continuous function with the maximum $\rho_{D,i,max} < \infty$ the isodose $ID_{i,k}$ can be chosen from the range $0 < ID_{i,k} < \rho_{D,i,max}$ and the fraction of dose contribution ki caused by the zones that were determined by the isodose is described by

$$k_i = \int f(\rho_{D,i}(\vec{r}))dV/D_{i,\infty} \text{ FOR } f(\rho_{D,i}(\vec{r})) = \begin{cases} \rho_{D,i}(\vec{r}), & \rho_{D,i}(\vec{r}) \geq ID_{i,k} \\ 0, & \rho_{D,i}(\vec{r}) < ID_{i,k} \end{cases}$$
Authentic Swedish house models

• Wooden house and brick house
• Eleven observation points:
 - #1 bedroom
 - #2 bathroom
 - #3 second bedroom (e.g. child, guest)
 - #4 dressing room
 - #5 corridor
 - #6 restroom
 - #7 hall
 - #8 workroom
 - #9 kitchen
 - #10 living room
 - #11 dining room
• Contamination on the ground as well as 2.5 cm and 5cm beneath it
• Positions of doors and windows are reflected in the shape of the isodose lines
Brick house – residential behaviour

- Zones decrease with entering the soil
- Zones slightly increase for deeper soil depth
Wooden house – residential behaviour

- Zones are smaller compared to the brick house
- Isodose lines are gentler compared to the brick house
Brick house – vertical migration

- Dominance of the top soil layer
- Zones slightly become smaller as the contaminants migrate into deeper soil levels
Contamination variability

- Comparison of the homogeneous contamination scenario with three different contamination variability scenarios
Brick house – contamination variability
Wooden house – contamination variability
Comparison of decontaminating 116 m²

<table>
<thead>
<tr>
<th>Ground contamination of 500 kBq/m² 137Cs</th>
<th>Primary dose (mGy/a)</th>
<th>After normal decontamination</th>
<th>After optimized decontamination</th>
<th>Comparison of relative dose reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (mGy/a)</td>
<td>Relative dose reduction</td>
<td>Dose (mGy/a)</td>
<td>Relative dose reduction</td>
</tr>
<tr>
<td>Brick house:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous scenario</td>
<td>1.37</td>
<td>1.21</td>
<td>12.3%</td>
<td>1.13</td>
</tr>
<tr>
<td>Variability scenario 1</td>
<td>1.42</td>
<td>1.25</td>
<td>12.5%</td>
<td>1.14</td>
</tr>
<tr>
<td>Variability scenario 2</td>
<td>1.34</td>
<td>1.21</td>
<td>9.6%</td>
<td>1.14</td>
</tr>
<tr>
<td>Variability scenario 3</td>
<td>1.38</td>
<td>1.21</td>
<td>12.1%</td>
<td>1.13</td>
</tr>
<tr>
<td>Wooden house:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous scenario</td>
<td>2.80</td>
<td>2.37</td>
<td>15.5%</td>
<td>2.21</td>
</tr>
<tr>
<td>Variability scenario 1</td>
<td>2.91</td>
<td>2.47</td>
<td>15.3%</td>
<td>2.24</td>
</tr>
<tr>
<td>Variability scenario 2</td>
<td>2.71</td>
<td>2.39</td>
<td>12.1%</td>
<td>2.25</td>
</tr>
<tr>
<td>Variability scenario 3</td>
<td>2.86</td>
<td>2.39</td>
<td>16.3%</td>
<td>2.21</td>
</tr>
</tbody>
</table>
Conclusions

• Introduction to the concept of the isodose

• Influences of
 - building materials
 - resident behaviour
 - vertical migration
 - variability in contamination

• Comparison to normal decontamination
Further details

