





#### Introducing the concept of the isodose for optimization of decontamination activities based on typical Northern European houses

Y. Hinrichsen<sup>1,2</sup>, R. Finck<sup>2</sup>, J. Martinsson<sup>2</sup>, C. Rääf<sup>2</sup>, K. G. Andersson<sup>1</sup>

<sup>1</sup>Technical University of Denmark, Center for Nuclear Technologies, Denmark <sup>2</sup>Lund University, Department of Translational Medicine, Medical Radiation Physics, Sweden

# Outline

- Introduction to the concept of the isodose
- Influences of
  - building materials
  - resident behaviour
  - vertical migration
  - variability in contamination
- Comparison to normal decontamination

### Definition of the isodose

The isodose  $ID_{i,k}$  is defined by the outer boundary of one or more zones in space that contribute for the most part to a given fraction kto the dose at the observation point i. For  $\rho_{D,i}(\vec{r})$  being a continuous function with the maximum  $\rho_{D,i,max} < \infty$  the isodose  $ID_{i,k}$  can be chosen from the range  $0 < ID_{i,k} < \rho_{D,i,max}$  and the fraction of dose contribution *ki* caused by the zones that were determined by the isodose is described by

$$k_{i} = \int f(\rho_{D,i}(\vec{r})) dV / D_{i,\infty} \text{ FOR } f(\rho_{D,i}(\vec{r})) = \begin{cases} \rho_{D,i}(\vec{r}), & \rho_{D,i}(\vec{r}) \ge ID_{i,k} \\ 0, & \rho_{D,i}(\vec{r}) < ID_{i,k} \end{cases}$$

# Authentic Swedish house models

- Wooden house and brick house
- Eleven observation points:
  - #1 bedroom
  - #2 bathroom
  - #3 second bedroom (e.g. child, guest)
  - #4 dressing room
  - #5 corridor
  - #6 restroom
  - #7 hall
  - #8 workroom
  - #9 kitchen
  - #10 living room
  - #11 dining room

Contamination on the ground as well as 2.5 cm and 5cm beneath it



#### Brick house – ground contamination







 Positions of doors and windows are reflected in the shape of the isodose lines

## Brick house – residential behaviour







- Zones decrease with entering the soil
- Zones slightly increase for deeper soil depth

#### Wooden house – residential behaviour







- Zones are smaller compared to the brick house
- Isodose lines are gentler compared to the brick house

## Brick house – vertical migration







- Dominance of the top soil layer
- Zones slightly become smaller as the contaminants migrate into deeper soil levels

# Contamination variability

 Comparison of the homogeneous contamination scenario with three different contamination variability scenarios



- 3

- 2





#### Brick house – contamination variability





#### Wooden house – contamination variability



## Comparison of decontaminating 116 m<sup>2</sup>

| Ground<br>contamination<br>of 500 kBq/m <sup>2</sup><br><sup>137</sup> Cs | Primary<br>dose<br>(mGy/a) | After normal decontamination |                            | After optimized decontamination |                         | Comparison of relative dose |
|---------------------------------------------------------------------------|----------------------------|------------------------------|----------------------------|---------------------------------|-------------------------|-----------------------------|
|                                                                           |                            | Dose<br>(mGy/a)              | Relative dose<br>reduction | Dose<br>(mGy/a)                 | Relative dose reduction | reductions                  |
| Brick house:                                                              |                            |                              |                            |                                 |                         |                             |
| Homogeneous scenario                                                      | 1.37                       | 1.21                         | 12.3%                      | 1.13                            | 18.4%                   | 1.47                        |
| Variability scenario 1                                                    | 1.42                       | 1.25                         | 12.5%                      | 1.14                            | 20.3%                   | 1.62                        |
| Variability scenario 2                                                    | 1.34                       | 1.21                         | 9.6%                       | 1.14                            | 15.2%                   | 1.55                        |
| Variability scenario 3                                                    | 1.38                       | 1.21                         | 12.1%                      | 1.13                            | 18.4%                   | 1.50                        |
| Wooden house:                                                             |                            |                              |                            |                                 |                         |                             |
| Homogeneous scenario                                                      | 2.80                       | 2.37                         | 15.5%                      | 2.21                            | 21.2%                   | 1.37                        |
| Variability scenario 1                                                    | 2.91                       | 2.47                         | 15.3%                      | 2.24                            | 23.0%                   | 1.50                        |
| Variability scenario 2                                                    | 2.71                       | 2.39                         | 12.1%                      | 2.25                            | 17.1%                   | 1.42                        |
| Variability<br>scenario 3                                                 | 2.86                       | 2.39                         | 16.3%                      | 2.21                            | 22.8%                   | 1.39                        |

# Conclusions

- Introduction to the concept of the isodose
- Influences of
  - building materials
  - resident behaviour
  - vertical migration
  - variability in contamination
- Comparison to normal decontamination

## Further details

- Hinrichsen, Y., Finck, R., Rääf, C., Andersson, K. G., 2018. Introducing the concept of the isodose for optimisation of decontamination activities in a radioactive fallout scenario. J. Radiol. Prot. 38, 1293–1310.
- Hinrichsen, Y., Finck, R., Martinsson, J., Rääf, C., Andersson, K. G., 2019. Influence of the migration of radioactive contaminants in soil, resident occupancy, and variability in contamination on isodose lines for typical Northern European houses. Sci. Rep. 9, 7876.



