Developments and justification of applications using ionising radiation in the medical field

Steve Ebdon-Jackson
MERIT, Public Health England

Nordic Society for Radiation Protection - 26 August 2015, Roskilde, Denmark
System of Protection - ICRP

Principles :-

Justification – more good than harm

Optimisation - ALARA

Dose limitation – applies to planned exposures only

Exposure situations :-

planned exposures, existing exposures, emergency exposures

Categories of exposure :-

occupational

public

medical

NB medical exposures are planned but not subject to dose limitation
Protection in Medical Exposures

Compensate for lack of dose limitation by;

- diagnostic reference levels, [dose constraints]
- additional level of justification

ICRP specifies 3 levels of justification

Level I – use of radiation in medicine

Level II – types or classes of practice

Level III – individual patient level
Justification in Medical Exposures

European Basic Safety Standards Directive 2013/59/Euratom

Justification Level III

Article 55 – benefit outweighs detriment

Justification Level II

Article 19.1 – types or classes justified before being adopted
Article 19.2 – review existing types or classes if new evidence
Article 19.4 – consider occupational and public exposure
Level II Justification in Medical Exposures

Article 19.1

Member States shall ensure that new classes or types of practices…… are justified before being adopted

What is a type or class of medical exposure?

What are the options for competent authorities?

What are the practical implications?
Level II Justification in Medical Exposures

What are the options for competent authorities?

Generic v specific approach

What are the practical implications?

Realistic mechanisms in the face of rapid technological change
Level II Justification in Medical Exposures

Factors or data to consider

CE marking

Marketing Authorisation

Availability

Professional guidance, best and established practice and peer reviewed research
Generic Approach

identify key descriptors

- modalities under consideration
- types of medical exposure

eg. use of radiography for health screening programmes

national breast cancer screening programme - YES

eg. use of CT for health screening programmes

national lung cancer screening programme - NO
Level II Justification in Medical Exposures

Advantages (for regulators)

- simple to understand
- simple to update
- approach applicable and consistent across sectors

Disadvantages (for users)

- difficult to understand
- seems to only apply to major changes

NB provides limited control of day to day medical practice
Level II Justification in Medical Exposures

Specific Approach

identify detailed descriptors

- modality under consideration
- specific procedure/investigation under consideration
- specific condition under consideration
- specify role in clinical pathway

eg. use of PET CT using 18F fluoro - choline in diagnosis for prostate cancer - YES

eg. use of PET CT using 18F fluoro - choline in diagnosis for bladder cancer - NO
Level II Justification in Medical Exposures

Advantages (for users)

- simple to understand
- applies to day to day practice

Disadvantages (for regulators)

- complexity means difficult/impossible to provide timely updates
- neither applicable nor consistent across sectors

NB provides detailed control of day to day medical practice
Examples of New Types or Classes of Medical Exposures

Introduction of a new application of existing equipment based type or class of medical exposure
Examples of New Types or Classes of Medical Exposures

Introduction of a new application of existing equipment based type or class of medical exposure

whole body scanning for Individual Health Assessment using Computed Tomography (CT)
Examples of New Types or Classes of Medical Exposures

Introduction of a new application of existing equipment based type or class of medical exposure

Whole body scanning for Individual Health Assessment using Computed Tomography (CT)

Introduction of a new equipment based type or class of medical exposure
Examples of New Types or Classes of Medical Exposures

Introduction of a new application of existing equipment based type or class of medical exposure

whole body scanning for Individual Health Assessment using Computed Tomography (CT)

Introduction of a new equipment based type or class of medical exposure
diagnosis using dual energy Computed Tomography (CT)
Examples of New Types or Classes of Medical Exposures

Introduction of a new application of existing equipment based type or class of medical exposure

whole body scanning for Individual Health Assessment using Computed Tomography (CT)

Introduction of a new equipment based type or class of medical exposure

diagnosis using dual energy Computed Tomography (CT)

Introduction of a new drug based type or class of medical exposure
Examples of New Types or Classes of Medical Exposures

Introduction of a new application of existing equipment based type or class of medical exposure

whole body scanning for Individual Health Assessment using Computed Tomography (CT)

Introduction of a new equipment based type or class of medical exposure

diagnosis using dual energy Computed Tomography (CT)

Introduction of a new drug based type or class of medical exposure

molecular radiotherapy using alpha emitters
Case Study One

Introduction of a new application of existing equipment based type or class of medical exposure

Whole body scanning for Individual Health Assessment using Computed Tomography (CT)

“Offers early detection of significant conditions, thus enhancing potential treatment success”
Whole Body Imaging – Diagnosis

Single scan using dual phase contrast injection demonstrates arterial and portal venous phases on one scan.
Whole Body Imaging
Whole Body Imaging – Individual Health Assessment

Established technology - CE marked equipment
Established investigation – whole body imaging using CT
Established conditions

- lung cancer, coronary heart disease, colorectal cancer
- spinal problems, osteoporosis, body fat assessment

But is it diagnosis/early diagnosis?

……. symptoms or risk?
Whole Body Imaging of the ‘Worried well’ - (IHA)

Special Offers - CT scans and health checks

Book now and save 10% on our most comprehensive health check!

Whole body CT scan MOTs a health risk.

Health MOTs using whole body CT scans are putting patients at risk of cancer and may be banned under Government plans.
Whole Body Imaging of the ‘Worried-well’

Response to COMARE recommendation:

“The evidence on the justification of x-ray exposures drawn from the COMARE report and from the consultation confirm that whole-body (neck to pubic symphysis), non-targeted, spinal, osteoporosis and body fat IHA CT scans are very unlikely to be justified.”
Changes to Legislation

Regulation 3:

These Regulations shall apply to the following medical exposures –

a) The exposure of patients as part of their own medical diagnosis or treatment, including any exposure of an asymptomatic individual

b) The exposure of individuals as part of occupational health surveillance

c) The exposure of individuals as part of health screening programmes

d) The exposure of patients or other persons voluntarily participating in medical or biomedical, diagnostic or therapeutic, research programmes

e) The exposure of individuals as part of medico-legal procedures
Case Study Two

Introduction of a new equipment based type or class of medical exposure

Diagnosis using dual energy Computed Tomography (CT)

“Offers different attenuation levels between materials enabling more detailed classification of pathology”
Dual Source CT – 2 X-Ray Tubes and 2 Detectors
SOMATOM Force – The All New Dual Source CT

New key components

Vectron tube
- 0.4 x 0.6 mm focal spot, 1,300 mA @ 70, 80, 90 kV

Stellar Infinity detector
- 2 x 96 rows (2 x 6 cm)
- 1.840 channels

Contactless data/power transmission
- 2 x 8.5 Gbit/s

High-speed patient table
- 737 mm/s speed
Triple-rule-out Turbo Flash scan with no breath hold in acute chest pain – kidney friendly

One thoraco-abdominal CTA including the coronary tree

SOMATOM Force

collimation: 192 x 0.6 mm
scan time: 0.80 s
scan length: 591 mm
rotation time: 0.25 s
90 kV, 398 mAs
CTDIcon: 2.8 mGy
DLP: 177 mGycm
2.6 mSv
HR: ~ 73 bpm

60% of Aortic Dissections are Type I, requiring long scan ranges

Turbo Flash scan reveals root cause of atypical chest pain - a DeBakey Type I aortic dissection

Including the coronary tree

60% of Aortic Dissections are Type I, requiring long scan ranges
Dynamic myocardial stress perfusion - combining diagnostic and functional imaging at low dose

End-systolic ECG triggering for a thick myocardium, without beta-blockade and under adenosine stress.

80 kV, 117 mAs, 4.4 mSv
Lung imaging - high accuracy for nodule detection even at the dose of conventional X-ray

<table>
<thead>
<tr>
<th>Examination</th>
<th>Average Effective Dose (mSv)</th>
<th>Values Reported in Literature (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>0.1</td>
<td>0.03-0.22</td>
</tr>
<tr>
<td>Cervical spine</td>
<td>0.2</td>
<td>0.07-0.3</td>
</tr>
<tr>
<td>Thoracic spine</td>
<td>1.0</td>
<td>0.6-1.4</td>
</tr>
<tr>
<td>Lumbar spine</td>
<td>1.5</td>
<td>0.3-1.0</td>
</tr>
<tr>
<td>Posteroanterior and lateral study of chest</td>
<td>0.1</td>
<td>0.05-0.24</td>
</tr>
<tr>
<td>Posteroanterior study of chest</td>
<td>0.02</td>
<td>0.007-0.050</td>
</tr>
<tr>
<td>Mammography</td>
<td>0.4</td>
<td>0.10-0.60</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.7</td>
<td>0.04-1.1</td>
</tr>
<tr>
<td>Pelvis</td>
<td>0.6</td>
<td>0.2-1.2</td>
</tr>
<tr>
<td>Hip</td>
<td>0.7</td>
<td>0.18-2.71</td>
</tr>
<tr>
<td>Shoulder</td>
<td>0.01</td>
<td>...</td>
</tr>
<tr>
<td>Knee</td>
<td>0.005</td>
<td>...</td>
</tr>
<tr>
<td>Other extremities</td>
<td>0.001</td>
<td>0.0002-0.1</td>
</tr>
<tr>
<td>Dual x-ray absorptiometry (without CT)</td>
<td>0.001</td>
<td>0.001-0.005</td>
</tr>
<tr>
<td>Dual x-ray absorptiometry (with CT)</td>
<td>0.04</td>
<td>0.003-0.06</td>
</tr>
<tr>
<td>Intravenous urography</td>
<td>3</td>
<td>0.7-3.7</td>
</tr>
<tr>
<td>Upper gastrointestinal series</td>
<td>6*</td>
<td>1.5-12</td>
</tr>
<tr>
<td>Small-bowel series</td>
<td>5</td>
<td>3.0-7.8</td>
</tr>
<tr>
<td>Barium enema</td>
<td>8*</td>
<td>2.0-18.0</td>
</tr>
<tr>
<td>Endoscopic retrograde cholangiopancreatograpy</td>
<td>4.0</td>
<td>...</td>
</tr>
</tbody>
</table>

Radiology 2008;248:254-63

SOMATOM Force

Dual Selective Photon Shield
- collimation: 2x 192 x 0.6 mm
- rotation time: 0.25 s
- tube setting: 100 kV Sn
- 0.06 mSv

Lung examinations with significantly improved air-to-soft-tissue contrast allow doses of conventional X-ray

Courtesy of University Hospital of Zürich, Switzerland
Low dose early detection lung cancer - low dose lung CT at enhanced soft-tissue-to-air contrast

Dual Selective Photon Shield
collimation: 192 x 0.6 mm
rotation time: 0.25 s
tube setting:
100 kV Sn
0.1 mSv

Significantly improved air-to-soft-tissue contrast due to 100 kV Sn scan mode (Dual Selective Photon Shield II)

SOMATOM Force

Courtesy of UMM, Mannheim, Germany
Gout diagnosis and evaluation with Dual Energy CT

TwinBeam Dual Energy

collimation: 64 x 0.6 mm
scan time: 8 s
scan length: 218 mm
rotation time: 0.5 s
tube setting:
AuSn120 kV, 298 eff. mAs
CTDInvol: 6.4 mGy
DLP: 141 mGycm
Eff. Dose: 0.11 mSv

*TwinBeam Dual Energy is pending 510(k) clearance and is not yet commercially available in the United States. Post processing software is under development. Not available for sale in the U.S.
Accurate and non-invasive diagnosis of gout

SOMATOM Definition
AS+

80/140 kV
eff. dose: 0.13 mSv

Single Source
Dual Energy
Diagnosis using Dual Energy CT

Established technology - CE marked equipment
Established technique – diagnostic imaging using CT
Established benefits for patients with underlying conditions (eg contrast reduction)

- aortic dissections, coronary heart disease, lung cancer
- gout

Is diagnosis really necessary for all using CT?
Case Study Three

Introduction of a new drug based type or class of medical exposure

Molecular radiotherapy using alpha emitters

“Offers effective palliation for patients with bone metastases with reduced myelosuppression”
Skeletal metastases

> 90% of metastatic patients \(^1\)

↑ surgery / EBRT for skeletal-related events \(^2\)

↑ disability, QOL impairment, treatment cost & death \(^3\)

Bone seeking radiopharmaceuticals

- 32P orthophosphate
- 89SrCl$_2$
- 186Re HEDP
- 153Sm EDTMP
- 188Re HEDP

Effective palliation **but** myelosuppressive

Declining use

β^- particle emitting radiolabels

EDTMP, ethylenediamine tetra(methylene phosphonic acid); HEDP, hydroxyethylidene diphosphonate; 32P, phosphorous-32; 186Re, rhenium-186; 188Re, rhenium-188; 153Sm, samarium-153; 89SrCl$_2$, strontium-89 dichloride
Ca$^{2+}$ analogue

Radium 223 (223Ra)

t$_{1/2} = 11.4$ days

95.5% alpha

3.6% beta

1.1% gamma

28.2MeV decay energy

Particle Range

<table>
<thead>
<tr>
<th>Relative particle mass</th>
<th>7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range in tissue (μm)</td>
<td>40–100</td>
</tr>
</tbody>
</table>
Particle Range

<table>
<thead>
<tr>
<th></th>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative particle mass</td>
<td>7000</td>
<td>1</td>
</tr>
<tr>
<td>Range in tissue (μm)</td>
<td>40–100</td>
<td>50–12000</td>
</tr>
</tbody>
</table>

Beta range
(10–1000 cell diameters²)

Beta emitter
Bone
Marrow
ALSYMPCA Overall Survival
ALpharadin in SYMptomatic Prostate CAncer

Hazard ratio, 0.70 (95% CI, 0.58–0.83)
P < 0.001

3.6m median OS gain (11.3 v 14.9 m)

ALSYMPCA Symptomatic Skeletal Event

Time to First Symptomatic Skeletal Event

Hazard ratio, 0.66 (95% CI, 0.52–0.83)
P<0.001

Radium-223
(median time to first symptomatic skeletal event, 15.6 mo)

Placebo
(median time to first symptomatic skeletal event, 9.8 mo)

1st SSE delayed by 5.8 m (15.6 v 9.8 m)

No. at Risk
Radium-223 614 496 342 199 129 63 31 8 8 1 0
Placebo 307 211 117 56 36 20 9 7 4 1 0

Expanded Access Programme (US)

- Phase 2 prospective, interventional, open-label, multicenter United States EAP Study (15995)
- Cancer resistant prostate cancer patients with symptomatic bone metastases (mCRPC)
- Acute and long-term safety evaluated

RESULTS

- 253 patients enrolled
- 184 patients received ≥ 1 Ra-223 injection
- Median number of injections EAP = 5 vs ALSYMPCA = 6

Vozelzang NJ et al. J Clin Oncol 33,2015 (Suppl 7; Abstr 247)
Radium-223: US Expanded Access Programme

In heavily pretreated patients with CRPC and symptomatic bone metastases, US EAP results confirm

- Ra-223 is well tolerated
- No secondary malignancies attributable to Ra-223
- Increased median OS benefit compared with ALSYMPCA population

Vozelzang NJ et al. J Clin Oncol 33,2015 (Suppl 7; Abstr 247)
Patient Selection

HB (g/L)

PSA (μg/L)

HB, haemoglobin
PSA, prostate-specific antigen
Patient Selection

HB (g/L)

PSA (μg/L)

HB, haemoglobin
PSA, prostate-specific antigen
Summary

Radium-223 in mCRPC

Radium-223 (50 kBq kg^-1 x 6)

• Significantly improves median OS by 3.6 m
• Delays median time to first SSE by 5.5 m
• Well tolerated

• EU Expanded Access Programme results awaited
• Further RCTs required
Molecular Radiotherapy using Alpha Emitters

- Established technique (but using beta emitters)
- Supportive evidence base from significant trials
- Common condition
- New application point in clinical pathway

Specific to disease progression
Limited value – OS and SSE (value judgement)

Expensive
Conclusions

Medical technology and its applications develop rapidly

the application of novel techniques to the individual should not be confused with adoption of a type or class of practice

established indicators of routine application (eg CE marking) may not be sufficient on their own – hybrid systems may be necessary

the boundary between research and accepted practice is blurred and the level of evidence applied to imaging and therapy medical applications may be different
Conclusions

Justification at Level II for new types or classes of practice for medical exposures is not simple

To what degree should Competent authorities get involved with clinical applications – even at Level II?

Competent authorities will need processes in place to demonstrate that they are satisfying requirements under BSS Directive 2013/59/Euratom Article 19

Ideally approaches and processes should be consistent and should apply to all new types or classes of practice – AND NOT JUST MEDICAL EXPOSURES
Conclusions

To the audience

– THANK YOU

To Competent authorities

- GOOD LUCK
Acknowledgements

Prof. Val Lewington – Guys and St Thomas’ Hospital, London

Miss Sarah Peters – Public Health England

Siemens

Philips