Ra-223 planar whole body scan and SPECT of surgically removed bone

Robin de Nijs, Søren Holm, Jann Mortensen

Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen

DEPARTMENT OF CLINICAL PHYSIOLOGY, NUCLEAR MEDICINE & PET

Introduction

Recently, radionuclide therapy with Ra-223 dichloride (Xofigo[™], Bayer Healthcare) has been initiated in many countries for the treatment of patients with castration-resistant prostate cancer with symptomatic bone metastases and no known visceral metastatic disease. Typical prescribed activity is 50 kBq/kg body weight given 6 times at 4 weeks interval.

The half-life of Ra-223 is 11.43 d, and the decay chain of Ra-223 to stable Pb-207 involves 6 stages, all with shorter half-lives (ms to minutes) than Ra-223. Four of the stages are by alfa, two by beta emission. The total emitted energy in the decay is 28 MeV, and a number of X-ray and gamma lines (1% of total energy) in the interval 80-400 keV allows external detection with photon counting devices and gamma-cameras.

Methods and Materials

The possibility of imaging Ra-223 treated patients and bone was investigated. We acquired a SPECT scan 27 days after the last treatment of ex-vivo bone, that was removed during hip surgery. The hip bone was stored in a plastic container in a formaldehyde solution. A planar whole body scan of a patient (in-vivo), who was administered 4.4 MBq Ra-223 one hour before scanning, was also acquired.

A dual head Philips Precedence SPECT-CT with MEGP collimators was used. A one hour planar whole body scan was acquired with 40 mm/min scan speed and 2.78 mm pixel size.

SPECT acquisition was performed in step and shoot mode with a 128x128 matrix size, 4.66 mm pixels and 128 angles. Data was acquired 600 s per angle resulting in a total acquisition time of almost 11 hours. Reconstruction was performed with a resolution recovery OSEM method (Astonish) with 3 iterations and 8 subsets. Attenuation Correction was performed with a 140 kVp low dose CT.

We compared a set-up with two 20% width energy windows. One at 269 keV overlapping the two most intense gamma-lines (14% and 11% yield) and another one at 84 keV overlapping the two most intense X-ray emissions at 84 and 81 keV (25% and 15% yield), see table 1.

A whole body planar patient scan

Figure 1: From left to right, 84 keV 20% width energy windows anterior and posterior view, 269 keV 20% width energy windows anterior and posterior view.

A SPECT-slice of surgically removed bone

Table 1: Gamma and X-ray emissions with yield >10%.

Nuclide	Energy in keV	Yield in %	Туре
---------	---------------	------------	------

Ra-223	81.1	15.2	X-ray	
Ra-223	83.8	25.2	X-ray	
Ra-223	269.5	13.7	gamma	
Rn-219	271.2	10.8	gamma	
Bi-211	351.1	12.9	gamma	
http://www.nndc.bnl.gov				

Results

The lower energy window resulted in visually better images than the higher energy window in both cases, see figure 1 and 2. The SPECT of the bone revealed that spatial allocation of the counts is best in the 84 keV window. The 269 keV SPECT showed a significant amount of counts in areas without bone indicating a bigger influence of scatter.

Figure 2: Top row, from left to right: 140 kVp low dose CT, 84 keV 20% width energy window and 269 keV 20% width energy window SPECT reconstructions. Bottom row: the SPECT reconstructions fused with the low dose CT.

Conclusions

LEGP collimators might improve the quality for the 84 keV SPECT, as long as downscatter from higher energy photons does not become a problem. We have showed that it is possible to image patients treated with Ra-223 and that it is best done with the 84 keV window.

FACULTY OF HEALTH AND MEDICAL SCIENCES UNIVERSITY OF COPENHAGEN

