Event-Mode Data Acquisition for Non-Destructive Laboratory Analysis

Harri Toivonen, Sakari Ihantola, Kari Peräläri, Roy Pöllänen, Kari Ruotsalainen, Jani Turunen

NSFS Meeting in Ålesund, 2008

OUTLINE

1. Introduction
2. Feasibility study 2007
3. PANDA equipment
4. Discussion

NDA - Non-Destructive Analysis

1. Sampling
2. Measurement: αβγXe-
3. Analysis and Data Management

Decay/emission processes and spectrometric analysis techniques

Emission processes are usually fast (typical time scales 10^{-15} s)

Conversion electron and X-ray spectrometry

Gamma spectrometry

Where is the beef?

Software-based coincidence

Event-mode data acquisition (List mode)
2. Feasibility study

- Accelerator Laboratory of the University of Jyväskylä.
- A particle from a nuclear bomb (Thule) was measured using a HPGe detector and an α-detector with 16x16 pixels.

Locating radioactive particles

Radioactive particles present in the sample are visible as "white" spots (here the Thule particle).

α-gated γ-spectrum

Only those photons are registered which are in coincidence with alpha particles.

Improved signal-to-noise ratio

Peak area smaller by a factor of 2-4.

Background reduced by factor of 1000.

Another example of “software coincidence”

γ-gated α-spectrum

Only those alphas (red histogram) are registered which are in coincidence with 59.5-keV photons.

Shape of the 241Am α-peak can be justified from the measurement.
3. PANDA - Particles And Non-Destructive Analysis

- Platform for different types of radiation detection systems.
- First results at the end of 2008.
- 2 measurement positions, 2 different detectors available in each position.
- Several detector types with different setups are possible.
- Samples: electrodeposited plates, air filters, swipes, individual particles ...

- Sample screening is done in measurement position 1, whereas position 2 is for detailed analyses of a specified particle.
- All measurements (including γ-ray spectrometry) can be done in vacuum (10^{-7} mBar) – α/β/Xe measurements are possible.
- Linear feedthroughs enables accurate movement and positioning of the detectors and the sample (~10 µm).

Position-sensitive detector and time stamps

- PANDA’s α-detector has 1024 pixels, each of them acts like an individual spectrometer – position signal from the strips.
- Coincidence window will be about 1 µs wide in time.
Data Management

- XML format for data structures
- Database designed for event-mode data
- Use of LINSSI database - I/O tables (LINux System for Spectral Information) intended for MySQL platform.
- Database attached to a www server; data visualization and other application scripts written in PHP.

LINSSI database

OUTLINE

1. Introduction
2. Feasibility study & equipment
3. PANDA equipment
4. Discussion

4. Discussion

- Some samples could be analyzed completely with PANDA.
 OR

PANDA could operate as a sophisticated screening device for locating particles of interest for further studies.

- PANDA finds particles with Pu-mass of the order of 10^{-14} g in 24 h.

$\sim 239,240$Pu particles with mass of 10^{-9} g (activity ~3 Bq, diameter ~6 µm) can be identified in a few min.