Radon resistance construction in Finland in 2007

Petteri Keränen
Project with H. Arvela, STUK

“The Radon Groke” in construction in Finland in 2007

Petteri Keränen
Project with H. Arvela, STUK

Figure: Moomins, the Groke - Tove Jansson
Mårran in Swedish, Mörkö in Finnish, Hufsa in Norwegian?

Radon in Finland

- Reference level for indoor radon concentration
 - existing dwellings 400 Bq/m³
 - new dwellings 200 Bq/m³
- 60,000 dwellings (3.6%) exceed 400 Bq/m³
 - 200,000 dwellings exceed 200 Bq/m³
- the new VARO study will update this information
- over wide areas (especially heavily populated southern Finland) 10-20% exceed 200 Bq/m³

National Building Code
part B3, substructures, 2004

- requires radon-technical design and radon-resistant structures in new building throughout Finland
- reference level 200 Bq/m³ for new buildings

Guidelines: Radon prevention
RT-10791 (LVI 37-10791)

- Guidelines for radon prevention in new building
- published 2003
- Key advice:
 - radon-resistant foundations are crawl-space and uniform concrete slab
 - slab on ground (most common foundation in Finland):
 1. seal the joint between the foundation wall and slab using bitumen felt (sockel, golvplatta)
 2. install sub-slab piping (“radon piping”)
Soil air

“Soil” contained about 40% of air.

“The Radon Groke” hides in soil air - and streams with it.

Soil air streams in soil - like wind in a very dense forest.

Comparison with water helps to understand its behaviour.

Soil air, contains radon

Indoor radon concentration

50 000 Bq/m³

leakage: 0.5 m³/h

Vent: 0.5 l/h

(or 125 m³/h)

area 100 m²,

volume 250 m³

The pressure difference due to

• temperature difference
• ventilation

Indoor warmth and lower pressure draws the Radon Groke.

In winter the Radon Groke gets fat!

• The Groke of Tove Jansson grew larger during the winter
• the pressure difference increases due to temperature difference -> radon is typically a harder problem in winter than in summer

Radon prevention

Block the entry - seal the gap between the foundation wall and the slab (floor)!

People do not sail with a leaking boat, why would they live in a leaking house?

Bitumen felt

foundation wall: concrete

light concrete blocks (porous material)

Bitumen felt and walls in contact with soil

• wall in contact with soil made of porous light-weight concrete blocks
• soil air penetrates easily
• plastering reduces penetration by a factor of 1000 (slamming)
• sealing with bitumen felt
Radon piping
1. suction (radon) piping
2. collector duct
3. air removal point
4. transmission duct
5. exhaust duct
6. damper
7. roof follow-through
8. exhaust fan
9. possible electrical regulator system for the fan

Piping depressurizes the sub-slab volume, when activated

Questionnaire
• selected 133 new buildings, completed in 2004 or later
• in Tampere, Kotka, Vantaa, Hyvinkää areas
• first radon measurement ordered and carried out by the owner occupants during 2004 - 2006
• questionnaire was sent, 101 responded
• questions mainly about foundations, materials, sealing, radon piping and ventilation
• new radon measurement during winter 2006 - 2007

Radon measurements and sealing
Dwellings with slab on ground:

<table>
<thead>
<tr>
<th>Sealing method</th>
<th>Number of dwellings exceeding 200 Bq/m³</th>
<th>mean Bq/m³</th>
<th>median Bq/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen felt</td>
<td>1 / 23</td>
<td>280</td>
<td>150</td>
</tr>
</tbody>
</table>

Quite many dwellings (7 of 23) in which bitumen felt was used still exceeded the reference level 200 Bq/m³. But the table does not indicate the entry points!

Hydrogen as a tracer
tracer gas: 95% N₂ 5% H₂

Results of the tracer studies:

<table>
<thead>
<tr>
<th>Leakage point and leakage severity</th>
<th># of affected dwellings (total of 11 dwellings with bitumen felt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead-throughs:</td>
<td></td>
</tr>
<tr>
<td>Significant leakage</td>
<td>10</td>
</tr>
<tr>
<td>Insignificant leakage</td>
<td>3</td>
</tr>
<tr>
<td>Joints of bitumen felt strips:</td>
<td>2</td>
</tr>
<tr>
<td>In corners</td>
<td>6</td>
</tr>
<tr>
<td>In the joint between the bearing separating wall and the slab</td>
<td>5</td>
</tr>
<tr>
<td>Close to doors</td>
<td>7</td>
</tr>
<tr>
<td>The joint between the wall and slab, straight segments of the walls:</td>
<td></td>
</tr>
<tr>
<td>Significant</td>
<td>1</td>
</tr>
<tr>
<td>Insignificant</td>
<td>5</td>
</tr>
<tr>
<td>Elsewhere</td>
<td></td>
</tr>
<tr>
<td>Close to electric wall sockets and plug points</td>
<td>3</td>
</tr>
<tr>
<td>Close to fireplace</td>
<td>1</td>
</tr>
</tbody>
</table>

Lead throughs:
Can be sealed afterwards - but not always easily.

protective pipings
Why do corners leak?

- Joints of bitumen felt strips not seamed!
 - mainly in corners
 - sealing with hot air, gas burner or with specific kind of sealing glue
 - maybe not the worst deficiency

No sealing at all...

- the joints between the wall and the slab often leak throughout the dwelling
- very hard to seal afterwards
- may disturb the activated radon piping

Radon piping

<table>
<thead>
<tr>
<th>Exhaust fan status</th>
<th>Number of dwellings</th>
<th>Mean Bq/m³ Before activation</th>
<th>Median Bq/m³ Before activation</th>
<th>Mean Bq/m³ After activation</th>
<th>Median Bq/m³ After activation</th>
<th>Average reduction in Rn concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>All dwellings</td>
<td>16</td>
<td>530</td>
<td>450</td>
<td>130</td>
<td>94</td>
<td>62%</td>
</tr>
<tr>
<td>With fan, below ref. lev</td>
<td>11</td>
<td>530</td>
<td>420</td>
<td>37</td>
<td>28</td>
<td>83%</td>
</tr>
<tr>
<td>With fan, above ref. lev</td>
<td>4</td>
<td>1000</td>
<td>1000</td>
<td>490</td>
<td>470</td>
<td>46%</td>
</tr>
</tbody>
</table>

- radon piping is commonly installed
- usually effective if activated with a fan; if not, sealing may improve
- efficiency of sub-slab depressurization may be defective in the case of high permeability sub-slab filling materials

Conclusions 1:

Radon piping
- commonly installed
- usually effective if activated with a fan; if not, sealing may improve
- efficiency of sub-slab depressurization may be defective in the case of high permeability sub-slab filling materials

Conclusions 2:

Sealing
- not as common as radon piping
- very hard to seal afterwards if problems arise
- non-sealed joints of the slab and the wall often leak throughout the dwelling
- lead-throughs are not sealed well enough
- joints of the bitumen felt strips should be seamed

More information: www.radon.fi