Studies of bystander effects in human artificial 3D tissue systems following charged particle microbeam irradiation

Oleg V. Belyakov
Non-Targeted Ionising Radiation Effects Research Group
Radiation Biology Laboratory
STUK - Radiation and Nuclear Safety Authority, Helsinki Finland

Targeted and non-targeted effects of ionising radiation

Non-targeted effects
- Bystander effect
- Radiation-induced genomic instability
- Low dose hypersensitivity
- Adaptive response
- Abscopal (out-of-field) effects
- Clastogenic factors
- Delayed reproductive death
- Induction of genes by radiation

Classical paradigm of radiation biology
- DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells
- The potential for biological consequences can be expressed within one or two cell generations

New evidence

Definition
The radiation-induced bystander effect is a phenomenon whereby cellular damage is expressed in unirradiated neighboring cells near to an irradiated cell or cells

Contribution of bystander and direct components to the radiation induced damage

Rationale
- Radiation effects at the tissue level under normal conditions prove that individual cells cannot be considered as isolated functional unit within most tissues of a multicellular organism.
- Experimental models, which maintain tissue-like intercellular cell signalling and three-dimensional (3D) structure, are essential for proper understanding of bystander effects.
- The main rationale for our research is that the bystander effect is likely to be natural phenomena which should be studied in an in vivo like multicellular system with preserved 3D tissue microarchitecture and microenvironment.
- This necessitates moving from in vitro cell culture systems to tissue-based systems.

Aims
- Our current work relates to human artificial epidermal (EpiDerm) and trachea-bronchial (AirWay) 3D tissue systems.
- Develop methods of low dose irradiations of 3D tissue models with microbeam irradiation facilities.
- Develop and test protocols for studying endpoints of bystander effects in 3D tissue environment.
- Estimate bystander induced apoptosis and premature differentiation in 3D tissue systems.
- Study mechanisms of bystander effects after microbeam irradiation.
- Clarify the nature of bystander effect and estimate potential applications for radiation protection.
Microbeams are facilities that allow irradiation of individual cells or cell regions with precise numbers of charged particles with micrometer precision.

Microbeam technology as a tool for bystander research

Microbeams are used to study the bystander effect, which propagates up to 1 mm away from the irradiated site. This effect is observed in artificial skin models irradiated along a straight line across tissue sample (8 mm) every 100 (or 20) μm with α-particles (~7.2 MeV).

Bystander effect propagates up to 1 mm away from the irradiated site

- Artificial skin models were irradiated along a straight line across tissue sample (8 mm) every 100 (or 20) μm with α-particles (~7.2 MeV).
- Fractions of micronucleated and apoptotic cells were estimated.
- Mean fraction of bystander apoptotic cells was 3.7±0.6% in irradiated cells and 1.3±0.3% in control.
- Using distance-dependent assay we demonstrated for the first time that bystander effect can be propagated up to 1 mm in tissue after irradiation with α-particle microbeam.

Experimental setup

- Microbeam irradiation of a single 2 μm spot with protons and 3He ions.
- In situ apoptosis assay with 3'-OH DNA end-labeling based technique.
- Studies of bystander-induced differentiation under in situ conditions using morphological measurements in underdeveloped EPI-201 model.

Paraffin histological section preparation

- Incubation for 1-3 days.
- Fixation in 10% neutral buffered formalin.
- Tissue is cut in half along line of irradiation.
- Paraffin embedding.
- One half is to be pilot cut in series or levels along X axis.
- Second half is to be stored for future experiments.

Distance-dependent assay after microbeam irradiation

- 5 µm paraffin sections
- Microbeam irradiated line or spot in the centre
- EpiDerm (EPI-212)
- EpiDerm, EPI-200
- Scheme of human skin
- Scheme of epidermis
- Cornified layer (dead)
- stratum granulosum
- stratum spinosum
- stratum basale
- basal membrane
- Malpighian layer (live)
- stratum corneum
- hyaline layer
- Scheme of epidermis
Dose-effect dependency for bystander induced apoptosis in EPI-200 artificial human skin models after microbeam irradiation with protons

Bystander apoptosis in EPI-200 artificial human skin after spot microbeam irradiation with 10 protons

Changes in bystander differentiation pattern after microbeam irradiation EPI-201, 3 days after irradiation

Microbeam irradiation increases ratio "cornified layer / total thickness"

MatTek artificial tracheal/bronchial epithelial tissue system

Bystander induced apoptosis following line ³He²⁺ microbeam irradiation
Bystander induced apoptosis following single spot 3He$^{2+}$ microbeam irradiation

Fraction of apoptosis

Irradiation of a single spot at the centre of the tissue. Sections were located approximately 300 micrometers away from irradiated spot.

Future work

- Mathematical modelling of bystander effect in 3D using an approach developed by Dr. Mark Little (ICFM).
- STUK together with QUB and ICFM are preparing a proposal for collaborative project “TissueMod”.
- We will use non-invasive deep tissue imaging technique using Zeiss ApoTome system for non-destructive detection of apoptosis in 3D tissues.
- Time-course of bystander induced apoptosis production will be studied in 3D.
- Mathematical modelling of bystander effect in 3D will help to clarify dynamics of the process and eventually contribute to estimation of risk for radiation protection.

Hypothesis - bystander effect is a protective mechanism

- Remove potentially damaged functional group of cells to decrease risk of transformation.
- Maximal at low doses when a small fraction of cells is exposed.
- Normal tissue microarchitecture amplifies the response.
- Apoptosis is an important contributor.
- Irreversible differentiation is a major pathway of removing potentially damaged cells from proliferating population.

A general scheme of radiation induced bystander effect in tissue systems

Sparse irradiation → Bystander signal → Tissue response

Conclusions

- Bystander response measured as increase in apoptosis, and differentiation was observed in cell cultures, explants and 3D tissue models.
- Bystander induced apoptosis is propagated over large distances in 3D tissue.
- Tissue sample acts as a single unit in response to microbeam irradiation. A cascade mechanism of bystander effect induction might be involved.
- It is tempting to suggest that the bystander response has the function of eliminating potentially damaged cells in the vicinity of radiation induced DNA damage by apoptosis and increased differentiation.

Implications for Radiation Protection

- Bystander effects could be important in several radiation related areas.
- It might contribute to better estimation of cancer risk from domestic radon exposure and uranium in drinking water.
- Effects of HZE (high-charge-and-energy) particles during space missions.
- High energy radiotherapy outcome.
- Health effects of air crew and nuclear power station personnel.
- In particular, bystander effect is potentially significant for radiation protection issues and may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region.
Non-Targeted Ionizing Radiation Effects Research Group

Dr. Oleg V. Belyakov,
Ass. Prof., Senior Scientist,
Group Leader
Heidi Mononen, Scientist
Marjo Perälä, Assistant

Acknowledgments

European Commission
6th Framework Programme
Euratom
RISC-RAD Integrated project
NOTE Integrated Project
STUK - Radiation and Nuclear Safety Authority, Finland
Gray Cancer Institute, UK
Queen’s University Belfast, UK
Imperial College, London, UK
MatTek Corp., Boston, USA