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E = mc2

Massen avtar 1 promille, og omdannes til 200 MeV energi.

Str̊aling: γ: 0 - 7 MeV; nøytroner 0 - 10 MeV
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• Thorium is fertile:

232Th + n → 233Th → 233Pa → 233U

22 min 27 d
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Advantages of thorium reactors

• Four times more Th than U in the world

• 100 % Th can be utilized in thermal reactors,

only about 1% for U

• Much smaller production of transuranic

elements (Np, Pu, Am, ...)

• Can “burn” radioactive waste (fission,

transmutation)

• Less risk for misuse in nuclear weapons?











Reactor types for thorium

* Molten Salt Reactor (MSRE) Homogeneous reactor based on
molten fluorides of Th and U

* High Temperature Thorium Reactor (HTTR) “Pebble bed”, graphite spheres
with U and Th

* Light Water Breeder (LWBR) Breeder reactor with U and Th

* BWR, PWR, VVER, CANDU Standard power reactors with a
mixture of U and Th in the fuel

* Accelerator Driven System (ADS) Subcritical reactor with U and
Th, accelerator and spallation

* Energy Amplifier (EA) Same as ADS, Carlo Rubbia’s
name
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Molten U/Th fluorides
Simple fuel production
1000 MWe
700 - 800 ◦C
Low pressure
Actinide burning
Little longlived waste
Closed cycle
Cannot melt!
Chemical removal of fission
products during operation
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“Burning” of waste

∗ Transuranics: Fission + transmutation

∗ Fission products: Transmutation
99Tc + n → 100Tc → 100Ru
211 000 years 16 s stable
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Proliferation resistant?

• More difficult, but not impossible to handle

• The critical mass is less than for 235U (8.4 kg

vs 21 kg)

• Much less neutron emission than Pu

(0,5 n ·s−1 ·kg−1 compared to 25 000)

* Possible to make “Gun-type” bomb

Operation Teapot, Nevada 1955
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Challenges

• High melting point (1750 ◦C vs 1133 ). Complicates fuel
production:

* Sintering temperature above 2000 ◦C vs 1700 for U

• The oxide is difficult to dissolve. Problematic extraction of 233U:
* Insoluble in nitric acid, hydrofluoric acid must be added

- Corrosion problems

• 232U complicates handling of spent fuel:
* Energetic γ-radiation from daughter products

• Spent fuel is more radioactive than for U
* More cooling needed after fuel discharge

• Material technology: High temperature, corrosion






